می، های، ضریب، ای، غیر، این

ی از این نوع خرابی ها در سازه.
7- ترتیب جاری شدن و شکست اعضاء و بررسی پیشرفت منحنی ظرفیت سازه.
8- بررسی کفایت مسیر بار با در نظر گیری تمام اجزاء سازه ای و غیر سازه ای سیستم به عبارت دیگر بررسی کفایت مسیر انتقال بار جانبی با توجه به ترکیب هندسی موجود سازه.
9- پارامترهای رفتار لرزه ای سازه (مثل شکل پذیری، ضریب رفتار، …)
1-3-4- روش انجام تحلیل پوش آور مرسوم
منحنی ظرفیت سازه به عنوان نموداری که محورافقی آن تغییرمکان افقی نقطه کنترل سازه می باشدومحورقائم آن برش پایه اعمالی بهسازهاست،ازتحلیل استاتیکی فزاینده غیرخطی حاصل میشود. نمونهای از منحنی ظرفیت سازه در شکل (1-2) نشان داده شده است.تحلیل استاتیکی فزاینده غیر خطی سازهبا استفاده از نرمافزارهایینظیر ETABS،SAP2000 و .. .به راحتی قابل انجام است.
نامهای انجام یک تحلیل استاتیکی فزاینده غیرخطی به صورت زیرفهرست میشود.

شکل(1-2): منحنی پوش آور[10].
1- ایجادیک مدل ریاضی از سازه.
2-اعمال بارجانبی به سازه،پس ازتعیین الگوی بارگذاری جانبی.
3-افزایش بارجانبی اعمالی به سازه تاجاییکه بعضی ازاعضای سازه به حدتسلیم برسند.
4-ثبت برش پایه اعمالی درآن مرحله وتعیین تغییرمکان نقطه کنترل برای کنترل رفتار و استفاده درمراحل بعد،ثبت نیروهای سایراعضا نیزلازم است.
5-بازسازی مدل با فرض سختی جانبی صفر برای اعضای جاری شده سازه.
6-افزایش بارجانبی بهسازه تاجاییکه عضوهای دیگری ازسازه جاری شوند.
7-ثبت برش پایه وتغییرمکان نقطه کنترل.
8- روند 3 تا 7 تاجائی تکرارمیشوندتا اینکه سازه یا براثرعواملی مانند ناپایدار شود و یا اینکه به تغییر مکان مشخص ازپیش تعیین شدهای برسد.
9-رسم برش پایه بدست آمده درمراحل مختلف درمقابل تغییرمکان نقطه کنترل سازه.
1-3-5- ارکان اصلی در انجام آنالیز استاتیکی غیر خطی
در آنالیز استاتیکی فزاینده غیر خطی سه مطلب اساسی باید مورد توجه قرار گیرد که عبارتند از مشخصات غیر خطی اجزاء، الگوی بارگذاری جانبی و تعیین تغییر مکان هدف. عدم شناخت کافی نسبت به موارد مذکور باعث ایجاد خطا در نتایج و تشدید آن در مراحل بعدی خواهد شد .
استفاده از الگوی بارگذاری متناسب با واقعیت، مدلسازی دقیق رفتار غیر خطی اجزاء سازه و تعیین تغییر مکان هدف صحیح، منجر به کسب نتایج با دقت بیشتر و تخمین مناسب نیازهای لرزه ای در آنالیز سازه خواهد شد. در ادامه به آنها پرداخته می شود.
1-4- پوش آور مودی
استفاده از روشهای تحلیل استاتیکی غیرخطی درتخمین عملکردسازههادرهنگام زلزله بسیار مورد توجه متخصصین قرارگرفته است. از فرضیات این روش این است که، رفتارسازه توسط موداول کنترل می گردد وشکل این مود درتمامی مدت تحلیل ثابت می ماند،که هر دوی این فرضیات غلط می باشند.امانتایج نشان دهندهتقریب مناسب اینروش می باشد. درجهت بهبود هرچه بیشترروش تحلیل استاتیکی فرایندهغیرخطی، روش تحلیل استاتیکی فزاینده غیرخطی مودی(MPA) باتوجه به اصول دینامیک سازههاارائه شده است که امکان در نظرگیری تمامی مودهای مؤثردرپاسخ سازه رابه کاربرمی دهد.
1-5- مقدمه ای بر آنالیز پوش آور تطبیقی
با محاسبه سختی لحظه ای اعضاء و در نتیجه ماتریس سختی کل در هر گام از آنالیز در هنگام اعمال بار جانبی به سازه، شاهد کاهش سختی سازه خواهیم بود. این موضوع نه تنها باعث تغییر پاسخ سازه به حرکات زمین می گردد، بلکه همچنین باعث تغییر توزیع نیروهای اینرسی در ارتفاع سازه خواهد شد. برای تحقق این فرضیات باید از آنالیز پوش آور تطبیقی استفاده گردد و همچنین در هرگام با توجه به کاهش سختی المانهای سازه باید الگوی بارگذاری اصطلاحاً به هنگام گردد. همانطور که در قسمت نواقص و معایب آنالیز پوش آور متداول بیان گردید، تغییرات فوق در خلال آنالیز منظور نمی گردد و الگوی بارگذاری با یک توزیع ثابت به سازه وارد می شود و این یک منبع خطای مهم در ارزیابی لرزه ای سازه محسوب می گردد. اساس روش پوش آور تطبیقی به دو گونه انجام می شود؛ پوش آور تطبیقی مبتنی بر نیرو و مبتنی بر جابجایی.
1-6- نتیجه گیری
در این فصل با توجه به نتایج مشاهده شده توسط روش های تحلیل پوش آور به هنگام شونده و مقایسه روش پوش آور تطبیقی مبتنی بر نیرو با نتایج آنالیز دینامیکی غیر خطی و پوش آورهای متداول، طبق نتایج بدست آمده از این روش در سازه های کوتاه به علت تاثیر کمتر اثر مود های بالاتر می توان گفت نتایج این آنالیز معتبر است ولی مطابق با بررسی های که توسط پاپینکولار و النشای در سال 2006 انجام داده اند و ثابت نمودند به دلیل اینکه در روش FAP به علت استفاده از قوانین ترکیب مودال درجه دوم مثل SRSS تغیر علامت نیرو های مودال در طبقات مختلف مود های بالا تر از بین رفته و علامت مولفه های بردار الگوی بار اعمالی در تمام طبقات یکسان است، می توان گفت نتایج تحلیلیFAP در سازه های بلند که اثر مود های بالاتر تاثیر گذاری بیشتری دارند، نه تنها بهبودی در نتایج حاصل نکرده است، بلکه نتایج به سمت مسیر گمراه کننده پیش می رود. در مقابل، نتایج بدست آمده از آنالیز پوش آور تطبیقی بر اساس جابجایی در سازه های بلند دارای نتایج قابل قبول تری نسبت به آنالیز مبتنی بر نیرو و پوش آورهای دیگر می باشد.
فصل دوم
« بررسی ضریب رفتار و اجزاء تشکیل دهنده آن »
آیین نامه های طراحی لرزه ای، نیرو های لرزه ای برای طراحی ارتجاعی سازه را از یک طیف خطی که وابسته به زمان تناوب طبیعی سازه و شرائط خاک محل احداث سازه می باشد، به دست میآورند و جهت در نظر گرفتن اثر رفتار غیر ارتجاعی و اتلاف انرژی بر اثر رفتار هیسترتیک ، میرائی و اثر مقاومت افزون سازه، این نیروی ارتجاعی را به وسیله ضریب کاهش مقاومت یا به عبارت دیگر ضریب رفتار سازه به نیروی طراحی مبدل می نماید. در حال حاضر به نظر می رسد که در اغلب آیین نامه های طراحی لرزه ای مقادیر ضریب رفتار ارائه شده بر مبناء قضاوت مهندسی، تجربه و مشاهده عملکرد سازه در زلزله های گذشته و چشم پوشی از تراز مقاومت افزون استوار می باشد، به همین دلیل محققین روش های تئوریکی جهت محاسبه ضریب رفنار ارائه نموده اند که در این فصل به طور کامل تشریح گردیده است.
2-1- مقدمه
به طور کلی می توان گفت طراحی سازه ها بر اساس آنالیز های لرزه ای بر این مبناء است که رفتار ساختمان در مقابل نیرو های ناشی از زلزله های کوچک، بدون خسارت در محدوده ارتجاعی باقی بماند و در هنگام وقوع زلزله های شدید که رفتار سازه وارد ناحیه غیر خطی می شود ضمن حفظ پایداری کلی خود، خسارتهای سازه ای و غیر سازه ای را تحمل کند، به همین منظور طراحی لرزه ای سازه در هنگام ورود به ناحیه غیر خطی مستلزم آنالیز های غیر خطی می باشد.
می توان گفت یک تحلیل دینامیکی غیر خطی بیانگر رفتار صحیح و واقعی سازه به هنگام وقوع زلزله می باشد امّا با توجه به پیچیده بودن و پر هزینه بودن آنالیز های غیر خطی و زمان بر بودن این نوع تحلیل ها، روشهای تحلیلی بر مبناء آنالیز در محدوده رفتار خطی سازه با نیروی کاهش یافته زلزله صورت می گیرد.
از طرفی تحلیل و طراحی سازه ها صرفا بر اساس رفتار ارتجاعی اعضاء و عدم توجه به رفتار غیر خطی در هنگام وقوع زلزله باعث ایجاد شدن طرحی غیر اقتصادی که شامل مقاطع سنگین برای طرح خواهد بود می شود.
از اینرو آیین نامه های لرزه ای، نیرو های برای طراحی ارتجاعی سازه را از یک طیف خطی که وابسته به زمان تناوب طبیعی سازه و شرائط خاک محل احداث سازه می باشد، به دست می آورند و جهت در نظر گرفتن اثر رفتار غیر ازتجاعی و اتلاف انرژی بز اثر رفتار هیسترتیک، میرایی و اثر مقاومت افزون سازه این نیروی ارتجاعی را به وسیله ضریب کاهش مقاومت یا به عبارت دیگر ضریب رفتار سازه به نیروی طراحی مبدل می نمایند.
با توجه به اینکه ضرائب رفتار تعین شده توسط آیین نامه های لرزه ای بر پایه مشاهدات عملکردی سیستم های سازه ای مختلف در زلزله های اتفاق افتاده و بر اساس قضاوت مهندسی استوار است در جهت رفع نگرانی پژوهشگران بابت فقدان ضرائب رفتار معقول و مبتنی بر مطالعات تحقیقاتی و پشتوانه محاسباتی در سالهای اخیر آیین نامه ها لرزه ای بر این اساس مدون گردیده اند که رفتار های هیستر تیک، شکل پذیری، مقاومت افزون، میرایی و ظرفیت سازه در هنگام استهلاک انرژی را جهت محاسبه ضریب رفتار در نظر بگیرند.
در این فصل به طور کلی تمام اجزاء ضریب رفتار شرح داده می شود.
2-2- تاریخچه مطالعاتی ضریب رفتار
در اغلب آیین نامه های طراحی لرزه ای مقادیر ضریب رفتار ارائه شده بر مبناء قضاوت مهندسی، تجربه و مشاهده عملکرد سازه در زلزله های گذشته و چشم پوشی از تراز مقاومت افزون استوار می باشد. به همین دلیل مقادیر عددی ضرائب رفتار به کار برده در آیین نامه ها مختلف متفاوت می باشد به طوری که می توان گفت محدوده عددی ضریب رفتار برای سازه های بتن مسلح با سیستم قاب خمشی در آیین نامه های اروپایی مانند EC8 بین عدد های 5/1 تا 5 است در صورتیکه برای همین نوع سیستم سازه ای در آیین نامه های آمریکایی مقادیر ضریب رفتار تا عدد 8 هم بیان گردیده است، از اینرو می توان گفت سازه هایی که مطابق آیین نامه های EC8 طراحی شده اند دارای طراحی های سنگین تری نسبت به طراحی های که مطابق آیین نامه های آمریکایی انجام گرفته است می باشند. اگر به طور خاص آیین نامه طراحی لرزه ای ایران را مورد مطالعه قرار دهیم، می توان گفت به دلیل آنکه ضرائب رفتار تعین شده بر مبناء قضاوت مهندسی است دارای کاستی هایی به شرح زیر می باشد:
1- برای سیستم های سازه ای، از یک نوع با ارتفاع ها و زمان تناوب ارتعاش متفاوت از ضرائب رفتار یکسانی استفاده میشود.
2- در R تاثیر شکل پذیری و مقاومت افزون و درجه نامعینی به صراحت نیامده است.
3- اثر لرزه خیزی منطقه در Rلحاظ نشده است.
4- اثر شرائط خاک در R لحاظ نشده است.
2-3- روشهای محاسبه ضریب رفتار
همانطور که از پیش ذکر شد روشهای سنتی چگونگی محاسبه ضریب رفتار برای سیستم های سازه ای بر اساس قضاوت مهندسی انجام می شده است، در طی سالهای اخیر روشهای علمی قابل اعتماد و جدیدی توسط تحقیقات نیومارک ارائه گردیده است.
می توان گفت جدید ترین رابطه های ارائه شده برای ضریب رفتار رابطه ای است که سه عامل شکل پذیری، مقاومت افزون و در جه نامعینی را در بر دارد. دو عامل شکل شکل پذیری و مقاومت افزون برای کشور های مختلف می تواند متفاوت می باشد، زیرا به متغیر های کیفی و کمی متعددی مانند فرهنگ ساخت و ساز و روشهای اجرائی، ناحیه لرزه خیزی و آیین نامه بارگذاری و طراحی بستگی دارد.
از اوائل دهه 1980 در انجمن فن آوری کاربردی (ATC) در طی پژوهشهای فریمن و یوانگ تلاش محققین به سمت تجزیه ضریب رفتار به عوامل تشکیل دهنده آن سوق پیدا نمود.
قابل توجه است که عامل نامعینی ابتدا در آیین نامه های ATC-19 و ATC-40 و سپس در آیین نامه UBC-1997 مطرح گردید.
در سال 1995 محققین برای محاسبه ضریب رفتار رابطه (2-1) را پیش نهاد نمودند.
(2-1)
که در رابطه فوق ضریب کاهش نیرو ناشی از مقاومت افزون و ضریب کاهش نیرو ناشی از شکل پذیری و کاهش نیرو ناشی از نامعینی یا به عبارت دیگر ضریب درجه نامعینی سازه می باشد.
به طور کلی تقسیم بندی که در مورد روشهای محاسبه ضریب رفتار می توان گفت به صورت زیر می باشد:
1- روش های آمریکایی
2- روشهای اروپایی
در طی مطالعات پزوهشگران گذشته روشهای آمریکایی نسبت به روشها اروپایی از ابتکار عمل ساده تری برخوردار بوده اند، به همین جهت در این رساله برای به دست آوردن نتایج ضریب رفتار صرفا” از روش های آمریکایی استفاده گردیده است.
2-3-1- روشهای آمریکایی
از بین روشهای آمریکایی دو روش طیف ظرفیت فریمن و روش یوانگ معتبر تر می باشند از اینرو در ادامه به صورت جزئی به شرح کامل این دو روش می پردازیم.
2-3-1-1- روش طیف ظرفیت فریمن
در سال 1990 فریمن یک روش تحلیلی جهت محاسبه ضریب رفتار تحت تاثیر پارامتر هایی مطابق با رابطه زیر ارائه نموده است.
(2-2)
به طور کلی هر کدام از پارامتر های رابطه فوق به عوامی زیر وابسته می باشد.
1- سیستم سازه ای
2- آرایش قابها
3- ترکیب بار ها
4- درجه نامعینی
5- میرایی سازه
6- ویژیگی های رفتار غیر خطی سازه
7- خصوصیات مصالح
8- نسبت ابعاد ساختمان
9- چگونگی مکانیزم خرابی و عوامل دیگر.
با توجه به گستردگی دامنه تاثیر گذاری عوامل مختلف بر پارمتر های اجزاء ضریب رفتار به ندرت می توان گفت که دو سازه ضریب رفتار یکسانی خواهند داشت.
در ادامه تحقیقات از بین عوامل تاثیر گذار بر ضریب رفتار یک سازه دو عامل ظرفیت سازه و نیرو های ناشی از زلزه را می توان از عوامل اصلی نام برد، که فریمن تمام عوامل فوق را به دو عامل اصلی ظرفیت افزایش یافته سازه و احتیاجات لرزه ای بسط داده است.
در این روش ظرفیت افزایش یافته به اصطلاح مقاومت افزون نام دارد و با نمایش داده می شود. ضریب مقاومت افزون را می توان از یک تحلیل استاتیکی غیر خطی با رسم منحنی ظرفیت سازه (برش پایه- تغیر مکان نقطه بام) از نسبت ضریب برش تسلیم کلی سازه به ضریب برش پایه متناظر با تشکیل اولین مفصل پلاستیک در سازه به دست آورد. عوامل موثری که در محاسبه این ضریب نقش دارند به شرح زیر می باشند.
1- ضرائب بار و ضرائب کاهش مقاومت مصالح
2- طراحی دست بالای اعضاء
3- سختی کرنشی
4- نامعینی سازه
5- شکل پذیری سازه
احتیاجات لرزه ای یا به عبارت دیگر ضریب کاهش نیرو در اثر شکل پذیری که با نمایش داده می شود، می توان گفت از رفتار غیر خطی سازه که منجر به میرایی و استهلاک انرژی می شود، به وجود آمده است. فریمن جهت محاسبه ضریب کاهش نیرو روش زیر را ارائه گردیده است:
در هنگام وقوع زلزله هر چه رفتار سازه از حد ارتجاعی فراتر رود سختی آن کاهش یافته و میرایی افزایش می یابد، در واقع در هنگام زلزله با ایجاد مفاصل پلاستیک در اعضاء سازه، سازه شکل پذیر تر می شود و به تبع افزایش شکل پذیری زمان پریود ارتعاشی سازه و همچنین میرایی سازه

این نوشته در پایان نامه ها ارسال شده است. افزودن پیوند یکتا به علاقه‌مندی‌ها.

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *