بهبود طبقه‌بندی سیگنال الکتروکاردیوگرام -ECG- با ماشین بردار پشتیبان و بهینه‌سازی اجتماع ذرات -PSO-SVM-

دانشکده برق و کامپیوتر

پایان‏نامه جهت اخذ درجه کارشناسی ارشد
رشته مهندسی پزشکی
عنوان:
بهبود طبقه‌بندی سیگنال الکتروکاردیوگرام -ECG- با ماشین بردار پشتیبان و بهینه‌سازی اجتماع ذرات -PSO-SVM-
استاد راهنما:
دکتر کرمی
دانشجو:
حسین زمانی پاشاکی
زمستان 93
تقدیم به پدر و مادر فداکارم
خدای را بسی شاکریم که از روی کرم پدران و مادرانی فداکار نصیب مان ساخته تا در سایه درخت پر بار وجودشان بیاسائیم و از ریشه آنها
شاخه و برگ گیریم و از سایه وجودشان در راه کسب علم و دانش تلاش نمائیم. والدینی که بودنشان تاج افتخاری است بر سرمان و نامشان
دلیلی است بر بودنمان. آموزگارانی که برایمان زنذگی؛ بودن و انسان بودن را معنا کردند.
سپاس و ستایش بیکران خداوند یگانه رحمان را سزاست که در روی کره ای متحرک ، لرزان، معلق و آویزان، کوه و صحرا رقم زد.
تقدیر و سپاسگزاری
سپاس بی حد و حصر خدای را که خوان نعمت بی دریغش همه ما بندگان را در بر گرفته و با نور وجودی ذات متعال خود، ما خاک نشینان را از پستوهای تاریکی و ضلالت بسوی دانایی، علم و کشف حقیقت هستی و افلاک نشینی شدن رهنمون میسازد.
در انجام این پژوهش، پس از لطف و عنایت باری تعالی از همیاری و همکاری اساتید بزرگواری که همواره راهنماییهای آنها چراغی جهت هدایت اینجانب بود و با همنشینی با این بزرگواران بود که به رهروی دانش مفتخر شدم، مراتب سپاس و قدردانی خود را به این عزیزان اعلام میدارم.

چکیدهآریتمی‌های قلبی یکی از بیماری‌های قلبی بوده که در مورد بیماران بستری شده در بخش مراقبت‌های ویژه باید به آن توجه شود. هوشمند‌سازی فرآیند تشخیص دقیق بیماری‌های قلبی مساله‌ای است که سال‌ها مورد توجه پژوهشگران قرار گرفته است. در این تحقیق روشی کارآمد جهت گزینش ویژگی‌های مناسب استخراج شده از سیگنال ECG، بر پایه‌ی الگوریتم باینری فاخته (BCOA) ارائه شده است. ویژگی‌های استخراج شده شامل ویژگی‌های زمانی،‌ AR و ضرایب موجک‌ است که تعداد این ویژگی‌ها با استفاده از عملگر mRMR یا PCA کاهش داده می‌شود BCOA ،مجموعه‌هایی از ویژگی تشکیل می‌دهد و همواره در پی یافتن مجموعه‌ای شایسته از تمامی ویژگی‌ها است. ارزیابی این مجموعه از ویژگی‌های ا‌نتخاب شده توسط‌BCOA با اعمال به طبقه بند SVM بررسی می‌شود. سپس الگوریتم‌ PSO جهت بهینه‌سازی پارامترهای‌ SVM اعمال می‌شود.‌ به کمک شبیه‌سازی کامپیوتری،صحت کلی سیستم برای شناسایی 6 نوع ریتم قلبی %97/98 به دست آمد که در مقایسه دقت حاصل شده با پژوهش‌های‌ پیشین،کارایی مطلوب روش پیشنهادی را نشان می‌دهد.
کلمات کلیدی: طبقه‌بندی سیگنال الکتروکاردیو گرام، الگوریتم فاخته، طبقه‌بند ماشین بردار پشتیبان.

TOC \o “1-3” \h \z \u فصل اول مقدمه PAGEREF _Toc414066774 \h 11-1- مقدمه PAGEREF _Toc414066775 \h 21-2- تعریف مسئله PAGEREF _Toc414066776 \h 21-3- ضرورت و اهمیت تحقیق PAGEREF _Toc414066777 \h 31-4- روش تحقیق PAGEREF _Toc414066778 \h 31-5- تعریف مفاهیم PAGEREF _Toc414066779 \h 4سیگنال الکتریکی قلب: PAGEREF _Toc414066780 \h 4پتانسیل عمل عضله قلب PAGEREF _Toc414066781 \h 5مرحله استراحت : PAGEREF _Toc414066782 \h 5مرحله دپلاریزاسیون : PAGEREF _Toc414066783 \h 5مرحله رپلاریزاسیون : PAGEREF _Toc414066784 \h 5موج P : PAGEREF _Toc414066785 \h 6منحنی QRS : PAGEREF _Toc414066786 \h 6موج T : PAGEREF _Toc414066787 \h 6قطعه ST : PAGEREF _Toc414066788 \h 6بازه QT: PAGEREF _Toc414066789 \h 6بیماریهای ضربان قلب : PAGEREF _Toc414066790 \h 6فصل دوم پیشینه پژوهش PAGEREF _Toc414066791 \h 22-1- مقدمه PAGEREF _Toc414066792 \h 10معرفی پایگاه داده: PAGEREF _Toc414066793 \h 102-2- طبقه‌بندی سیگنال ECG با استفاده از موجک و شبکه عصبی PAGEREF _Toc414066794 \h 102-3- طبقه‌بندی سیگنال ECG با استفاده ازموجک و خواص مورفولوژیک و شبکه عصبی PAGEREF _Toc414066795 \h 112-4- طبقه‌بندی سیگنال ECG با استفاده از تبدیل موجک و شبکه عصبی فازی PAGEREF _Toc414066796 \h 112-5- طبقه‌بندی سیگنال ECG با استفاده از تبدیل ویولت و شبکه عصبی مصنوعی و الگوریتم پرندگان PAGEREF _Toc414066797 \h 122-6- طبقه‌بندی آریتمی‌های قلبی با استفاده از SVM PAGEREF _Toc414066798 \h 122-7- طبقه‌بندی آریتمی دهلیزی بطنی PAGEREF _Toc414066799 \h 122-8- طبقه‌بندی سیگنال الکترو‌کاردیو‌گرام با طبقه‌بند ماشین بردار پشتیبان و الگوریتم PSO PAGEREF _Toc414066800 \h 132-9- طبقه‌بندی آریتمی‌های قلبی با استفاده از PSO PAGEREF _Toc414066801 \h 132-10- رویکرد ترکیبی در طبقه‌بندی سرطان PAGEREF _Toc414066802 \h 142-11- دسته‌بندی آریتمی‌های قلبی بر مینای تبدیل موجک و SVM PAGEREF _Toc414066803 \h 142-12- طبقه‌بندی سیگنال ECG با استفاده از خواص مورفولوژی PAGEREF _Toc414066804 \h 142-13- انتخاب ویژگی با استفاده از الگوریتم فاخته باینری PAGEREF _Toc414066805 \h 142-14- انتخاب ویژگی با استفاده از الگوریتم فاخته PAGEREF _Toc414066806 \h 15فصل سوم معرفی الگوریتم‌ها و روش‌های پردازش سیگنالECG PAGEREF _Toc414066807 \h 103-1- مقدمه PAGEREF _Toc414066808 \h 173-2- آنالیز موجک PAGEREF _Toc414066809 \h 173-2-1- تبدیل موج پیوسته (CWT) PAGEREF _Toc414066810 \h 183-2-2- تبدیل موجک گسسته PAGEREF _Toc414066811 \h 183-3-2-2- تجزیه چند سطحی PAGEREF _Toc414066812 \h 183-2-4- انتخاب موجک مادر PAGEREF _Toc414066813 \h 193-2-4- ویژگی‌های استخراج شده از ویولت PAGEREF _Toc414066814 \h 213-3- ویژگی زمانی PAGEREF _Toc414066815 \h 213-4- استخراج ویژگی با مدل خودبازگشتی(AR) PAGEREF _Toc414066816 \h 223-5- استراتژی انتخاب ویژگی PAGEREF _Toc414066817 \h 223-6- تحلیل مولفه اصلی (PCA) PAGEREF _Toc414066818 \h 233-7- روش بیشترین وابستگی و کمترین افزونگی (mRMR) PAGEREF _Toc414066819 \h 243-8- الگوریتم فاخته COA PAGEREF _Toc414066820 \h 263-8-2- جزییات الگوریتم بهینه‌سازی فاخته PAGEREF _Toc414066821 \h 273-8-2-1- تولید محل‌های سکونت اولیه فاخته‌ها (جمعیت اولیه‌ی جواب‌های کاندید) PAGEREF _Toc414066822 \h 293-8-2-2- روش فاخته‌ها برای تخم‌گذاری PAGEREF _Toc414066823 \h 303-8-2-3- مهاجرت فاخته‌ها PAGEREF _Toc414066824 \h 303-8-2-4- از بین بردن فاخته‌های قرار گرفته در مناطق نا‌مناسب PAGEREF _Toc414066825 \h 323-8-2-5- همگرایی الگوریتم PAGEREF _Toc414066826 \h 323-9- گسسته‌‌سازی دودویی الگوریتم فاخته PAGEREF _Toc414066827 \h 333-10- ماشین بردار پشتیبان(SVM) PAGEREF _Toc414066828 \h 333-11- الگوریتم بهینه‌سازی ذرات(PSO) PAGEREF _Toc414066829 \h 353-11-1- وزن اینرسی PAGEREF _Toc414066830 \h 363-12- شمای کلی سیستم طبقه‌بندی سیگنال ECG PAGEREF _Toc414066831 \h 38فصل چهارم روش پیشنهادی طبقه‌بندی سیگنال ECG PAGEREF _Toc414066832 \h 174-1- مقدمه PAGEREF _Toc414066833 \h 404-2- پیش‌پردازش سیگنال ECG PAGEREF _Toc414066834 \h 414-2-1- شیفت سیگنال به انحراف زمینه PAGEREF _Toc414066835 \h 424-2-2- حذف مقدار متوسط سیگنال PAGEREF _Toc414066836 \h 424-2-3- حذف نویز ناشی از برق شهر PAGEREF _Toc414066837 \h 434-2-4- هموارسازی سیگنال PAGEREF _Toc414066838 \h 434-2-5- پنجره‌گذاری سیگنال PAGEREF _Toc414066839 \h 434-2-6- آزمون همبستگی و حذف ضربان‌های نا‌همبسته PAGEREF _Toc414066840 \h 444-2-7- انتخاب داده‌های آموزش و آزمون PAGEREF _Toc414066841 \h 444-3- ویژگی‌های سیگنال PAGEREF _Toc414066842 \h 474-3-1- استخراج ویژگی PAGEREF _Toc414066843 \h 474-3-1-1- ویژگی زمانی PAGEREF _Toc414066844 \h 474-3-1-2- ویژگی موجک PAGEREF _Toc414066845 \h 474-3-1-3- ویژگی AR PAGEREF _Toc414066846 \h 474-3-1-4- شناسایی نقاط پراهمیت سیگنال با استفاده از PCA PAGEREF _Toc414066847 \h 484-3-2-ترکیب و ادغام ویژگی‌ها PAGEREF _Toc414066848 \h 484-3-2-1- انتخاب ویژگی با PCA PAGEREF _Toc414066849 \h 484-3-2-2- انتخاب ویژگی با mRMR PAGEREF _Toc414066850 \h 494-3-2-3- انتخاب ویژگی با استفاده از الگوریتم فاخته PAGEREF _Toc414066851 \h 494-4- طبقه‌بندی با استفاده از SVM PAGEREF _Toc414066852 \h 51فصل پنجم نتیجه‌گیری PAGEREF _Toc414066853 \h 555-1- مقدمه PAGEREF _Toc414066854 \h 565-2- مقایسه و نتیجه‌گیری PAGEREF _Toc414066855 \h 565-4- ارائه پیشنهاد PAGEREF _Toc414066856 \h 57منابع : PAGEREF _Toc414066857 \h 58
فصل اولمقدمه
1-1- مقدمهسیگنال تابعی از یک یا چند متغیر مستقل است که اطلاعاتی را در مورد یک پدیده فیزیکی یا بیولوژیکی در بردارد. موجودات زنده از سلول گرفته تا ارگان‌های بدن، سیگنال‌هایی با منشاء بیولوژیکی تولید می کنند. این سیگنال‌ها به صورت الکتریکی، مکانیکی یا شیمیایی‌اند. سیگنال‌های الکتریکی نتیجه دپلاریزاسیون سلول‌های عصبی یا ماهیچه قلبی‌اند. صدای تولید شده توسط دریچه‌های قلب نمونه‌ای از سیگنال‌های مکانیکی است. این سیگنال‌های بیولوژیکی یا سیگنال‌های حیاتی برای تشخیص پزشکی و تحقیقات زیست-پزشکی مورد استفاده قرار می‌گیرند.
سیگنال‌های حیاتی در سطح بدن وضعیت درونی و فعالیت الکتریکی بدن را منعکس می‌کنند. بنابراین با استفاده از اندازه‌گیری غیر تهاجمی اطلاعاتی درباره ارگان‌های داخلی فراهم می‌کند. الکتروکاردیوگرام توسط کاردیولوژیست‌ها برای اهداف تشخیصی استفاده می‌شود و اطلاعات کلیدی درباره فعالیت الکتریکی ECG ارائه می‌دهد. بنابراین با نمایش دائمی این سیگنال می‌توان تغییرات فعالیت الکتریکی قلب را در طول زمان مشاهده نمود که این تغییرات،شامل اطلاعات بسیارکلیدی برای پزشکان می باشد]1[.
1-2- تعریف مسئلهقلب یکی از مهمترین اعضای بدن است که وظیفه پمپ کردن خون در سیستم قلبی عروقی را به عهده دارد. چنانچه عملکرد قلب از نظم طبیعی (ریتم) خود خارج شود، گردش خون به خوبی انجام نمی شود و این امر می‌تواند خطرهای جدی برای فرد به دنبال داشته باشد، از این رو تشخیص درست و به موقع آریتمی‌های قلبی از اهمیت به سزایی برخوردار است. یکی از راههای شناخته شده برای تشخیص به موقع این آریتمی‌ها بررسی فعالیت‌های الکتریکی قلب با استفاده از سیگنال‌های الکتروکاردیوگرافی یا به اختصار ECG، است. تغییرات معنی داری از ساختار قلب بیماران و ضربان‌های آن با استفاده از این سیگنال‌ها قابل تشخیص هستند‌]2[. در چندین سال اخیر،طبقه‌بندی خودکار سیگنال‌های الکتروکاردیوگرام توجه زیاد مهندسین پزشکی را به خود جلب کرده است. به واسطه این سیگنال‌ها یک متخصص قلب اطلاعاتی مفید درباره ریتم و عملکرد قلب خواهد داشت. بنابراین آنالیز آن نشان دهنده ی یک راه مؤثر برای شناسایی و درمان انواع بیماری‌های قلبی است]3[.
برای طراحی یک سیستم هوشمند تشخیص آریتمی‌های قلبی از روی سیگنال‌های الکتروکاردیوگرافی،لازم است ابتدا ویژگی های مناسبی از روی این سیگنال‌ها استخراج شود. با توجه به اینکه ضرایب موجک قادرند اطلاعات زمان-فرکانس سیگنال را به طور توام توصیف کنند، یکی از انتخاب ها برای استخراج ویژگی از یک سیگنال الکتروکاردیوگرافی خواهد بود. در این راستا باید تعداد سطوح تجزیه و نوع موجک مشخص شوند. همچنین، نتایج تحقیقات قبلی نشان داده است که برای استخراج ویژگی از سیگنال‌های الکتروکاردیوگرافی خانواده دابیچز و هار در مقایسه با سایر موجک‌ها بسیار مناسب‌تر هستند ]4[. تشخیص پزشک براساس اطلاعات زمانی و ریخت‌شناسی استخراج شده از سیگنال الکتروکاردیوگرافی است. در حالی که گاهی اوقات تحلیل موجک بر روی سیگنال‌های قلبی به تنهایی برای طبقه‌بندی کافی نیست و به همین دلیل استفاده از دیگر ‌مشخصه‌های موجود در سیگنال‌های قلبی برای طبقه‌بندی بیماری‌های قلبی ضروری است. برای توصیف کامل‌تر سیگنال‌های الکتروکاردیوگرافی علاوه بر ویژگی‌های موجک از ویژگی‌های زمانی نیز استفاده می‌شود. ]4[.
1-3- ضرورت و اهمیت تحقیقاز آنجائی که ECG پزشک را قادر میسازد تا فعالیت الکتریکی قلب را ثبت کند، میتوان به کمک آن بیماری‌های قلبی را تشخیص داد. برای از بین بردن خطای انسانی و همچنین استفاده از بانکهای اطلاعاتی موجود در تشخیص دقیق و سریع بیماریها، از آنالیز خودکار کامپیوتری استفاده می‌شود.. بنابراین در این پژوهش سعی در تشخیص خودکار بیماری‌های قلبی شده که در آیندهای قابل پیشبینی سبب حذف اشتباهات انسانی در تشخیص بیماریها می‌شود. هدف از انجام این تحقیق ارائه یک روش مناسب برای تشخیص خودکار 5 بیماری‌ مهم قلبی، شامل نارسائیهای RBBB،LBBB و PVC وAPC وP می‌باشد.
1-4- روش تحقیقدر این پژوهش ابتدا داده‌های مربوط به سیگنال ECG از پایگاه داده تهیه می‌شود و پیش پردازش آن‌ها جهت انتخاب سیگنال‌های مناسب و همچنین پنجره‌گذاری روی آنها انجام خواهد شد. سپس ویژگی های مناسبی استخراج و بر اساس این ویژگی‌ها عمل طبقه‌بندی انجام می‌شود. مراحل فوق با استفاده از نرم افزار متلب صورت خواهد گرفت.
1-5- تعریف مفاهیمسیگنال الکتریکی قلب:
انتشار پتانسیل عمل در قلب، یک جریان ایجاد می‌کند. این جریان به نوبه خود تولید یک میدان الکتریکی می‌نماید که می‌تواند با استفاده از یک سیستم اندازه‌گیری ولتاژ تفاضلی به صورت خیلی ضعیف در سطح بدن بدست آید. سیگنال اندازه‌گیری شده به این طریق، هنگامی که به وسیله الکترودهایی در مکان‌های استاندارد گرفته شود، به عنوان الکتروکاردیوگرام یا به اختصار ECG شناخته میشود. سیگنال ECG معمولی، در رنج 2mv است و برای ثبت آن نیاز به دستگاهی با پهنای باند 0.5 تا 15هرتز می‌باشد. به عبارت دیگر ECG یک نمایش گرافیکی از فعالیت قلب به صورت سیگنال الکتریکی است که در طول یک دوره زمانی ثبت شده است[5].
وجود فعالیت الکتریکی برای ایجاد ضربان در قلب ضروری است. خون‌رسانی کافی به بافت‌‌های بدن، مستلزم تعداد ضربان کافی قلب بوده و هم چنین باید زمان‌بندی و توالی انقباضات عضلانی قلب به دقت هماهنگ باشند. ضربان‌ساز طبیعی قلب، “گره سینوسی- دهلیزی SA ” است که یک گروه میکروسکوپی از سلول‌های الکتریکی تخصص یافته قلبی می‌باشند و در بالای دهلیز راست واقع شده‌اند. به دنبال ایجاد یک تحریک الکتریکی توسط “گره سینوسی– دهلیزی “، یک ضربان قلب ایجاد می‌شود. این تحریک از طریق مسیرهای اختصاصی به سلول‌های بافت عضلانی دیواره‌های قلب منتقل می‌شود. این تحریک ابتدا حفره‌های فوقانی قلب یعنی دهلیزها را منقبض می‌کند و خون را به داخل بطن‌ها می‌راند. سپس تحریک به ناحیه دیگری از سلول‌های الکتریکی تحت عنوان “گره دهلیزی- بطنی “، که در بالای بطن‌ها واقع شده است، منتقل می‌گردد. این گره به شکل یک ایستگاه تأخیری در مسیر تحریک عمل می‌کند و اجازه می‌دهد دهلیزها به طورکامل تخلیه شوند. پس از یک فاصله کوتاه زمانی، تحریک از طریق مسیرهای شاخه‌ای وارد بطن‌ها شده و منجر به‌انقباض آنها می‌گردد.
سیگنال ECG در طول هر سیکل کاری قلب، دارای منحنی مشخصه‌ای به صورت شکل 1-1 است.

شکل 1-1 : یک سیکل از سیگنال ECG
پتانسیل عمل عضله قلبفرآیند انقباض هماهنگ بخش‌های مختلف قلب توسط پتانسیل عمل در سلول‌های موجود در بافت قلب انجام می‌گیرد. در ادامه مراحل مختلف پتانسیل عمل در یک سلول قلبی جهت ایجاد انقباض ماهیچه قلب بررسی می‌گردد[8].
مرحله استراحت : پیش از وقوع پتانسیل عمل، مرحله استراحت بر غشا حاکم است. در این مرحله گفته می‌شود که غشا پلاریزه یا قطبی است. زیرا پتانسیل آن 90- میلی‌ولت است.
مرحله دپلاریزاسیون :در این مرحله غشا ناگهان نسبت به یون سدیم نفوذپذیر می‌شود و اجازه می‌دهد تا تعداد بی‌شماری یون مثبت سدیم به درون آکسون جاری شود. حالت طبیعی پلاریزه با پتانسیل 90- میلی‌ولت از بین می‌رود و پتانسیل به سرعت در جهت مثبت بالا می‌رود. به‌این حالت دپلاریزاسیون می‌گویند.
مرحله رپلاریزاسیون : در چند ده‌هزارم ثانیه بعد از اینکه غشا به شدت نسبت به سدیم نفوذپذیر گردید،‌کانال‌های سدیم شروع به بسته شدن می‌کنند و کانال‌های پتاسیمی به میزان بیشتری نسبت به حالت طبیعی بازمی‌گردند. سپس انتشار سریع یون‌های پتاسیم به خارج، مجددا پتانسیل غشا را به حالت منفی زمان استراحت می‌رساند؛ به‌این حالت رپلاریزاسیون غشا می‌گویند.
موج P :انتشار پتانسیل تحریک از طریق دهلیز، باعث انقباض دهلیز میشود )دپلاریزاسیون( و موج P را تولید می‌کند. دامنه موج P به طور نرمال کم است.
منحنی QRS :منحنی QRS مربوط به دوره زمانی انقباض یا دپلاریزاسیون بطنی است. سیگنال رپلاریزاسیون دهلیزی مغلوب سیگنال بسیار بزرگتر بطنی می شود. این سیگنال حاصل دپلاریزاسیون بطنی است. منحنی QRS به دلیل حجم بافت بطنی که درگیر است سیگنال بسیار بزرگتری نسبت به موج P است.
موج T :موج T نتیجه انبساط یا رپلاریزاسیون بطن‌ها است و دارای طول زمانی بیشتری نسبت به منحنی QRS است، زیرا رپلاریزاسیون بطنی بسیار آهسته تر از دپلاریزاسیون اتفاق می‌افتد.
قطعه ST :بخش ST زمان بین دپلاریزاسیون و رپلاریزاسیون بطنی را نشان میدهد. بخش ST از پایان کمپلکس QRS شروع می‌شود و در آغاز موج T پایان مییابد. در حالت نرمال، بخش ST به‌اندازه 0.12 ثانیه یا کمتر است.
بازه QT:بازه QT از آغاز موج (Qi) Q شروع می‌شود و در نقطه پایان موج (Ti) Tتمام می‌شود، که نشان دهنده طول زمان سیکل دپلاریزاسیون یا رپلاریزاسیون است. اندازه نرمال زمانی بازه QTحدود 0.38 ثانیه است، و اندازه ‌آن در مردان و زنان و در سنین مختلف، متفاوت است. به عنوان یک قانون کلی، فاصله زمانی QT باید حدود 0.40 درصد فاصله زمانی R-R اندازه‌گیری شده باشد.
بیماریهای ضربان قلب :از تحلیل تغییرات ایجاد شده درشکل سیگنال نرمال الکتروکاردیوگرام می‌توان برای تشخیص بسیاری از انواع آریتمی و بیماری‌های قلبی استفاده شود. سیگنال الکتروکاردیوگرام می‌تواند به بخش‌ها و فواصل زمانی گوناگون تقسیم شود که با تعیین محدوده برای این بخش‌ها، ضربان‌های غیر نرمال تشخیص داده شوند. سیگنالهای ECG با توجه به شکل آنها و نوع آریتمی‌ها به گروه‌های مختلف تقسیم می شوند. انواع ضربان‌های قلبی با توجه به پایگاه داده MIT-BIH در جدول 1-1 نشان داده شده‌اند]6[.
Beat type Label
Normal beat N
Left bundle branch block L
Right bundle branch block R
Atrial premature beat A
Abberated atrial premature beat A
Nodal(junctional) premature beat J
Supraventricular premature beat S
Ventricular premature beat V
Fusion of ventricular and normal beat F
Ventricular flutter beat b or I
Nodal(junctional) escape beat J
Ventricular escape beat E
Fusion of paced and normal beat F
جدول 1-1 : ضربان های قلبی
در این تحقیق به طبقه‌بندی شش شکل مختلف سیگنال ECG که دارای بیشترین اهمیت هستند، پرداخته شده است. این ضربان‌ها عبارتند از:
نرمال (N)، بلوک شاخه دسته ای چپ (L یا LBBB)، بلوک شاخه دسته‌ای راست (R یا RBBB) و انقباض زودرس بطنی (V یا PVC) و ضربان زودرس دهلیزی (A) و تپش قلب (Pace beat).
بلوک شاخه دسته‌ای چپ (LBBB) و بلوک شاخه دسته‌ای راست (RBBB):
دسته‌ای از آریتمی‌ها مربوط به نارسایی‌های دسته‌ای هادی مختلف می باشند (بلوک شاخه دسته‌ای راست و بلوک شاخه دسته‌ای چپ). بلوکهای شاخه دسته‌ای (BBB) در اثر تأخیر در هدایت یکی از بخش‌های چپ (LBBB) یا راست (RBBB) سیستم هدایت بطنی رخ می‌دهد. به دلیل اینکه سیگنال در یکی از نیمه‌های بطن تأخیر یافته است، شکل QRS پهنتر می‌شود و گاهی نیز فرورفته می‌شود. این انسدادها معمولاً تاثیر بسیار کمی در عملکرد و کارآیی پمپاژ دارند و اما می‌توانند تغییر قابل ملاحظه‌ای در مسیر بردار قلبی و در نتیجه در شکل ظاهری ECG به وجود آورند. به همین دلیل این ضربان‌های قلبی غیر نرمال می‌توانند تغییرات دیگر ECG را که مشخص کننده بیماری‌ها (مثلا ایسکمی) می‌باشند را بپوشانند. در برخی موارد، این ناهنجاری‌های رسانش(LBBB و RBBB) نشانگر برخی از دیگر آسیب‌های بسیار مهم پنهان می باشند. برای نمونه، انسداد رگ های ریوی می‌تواند موجب یک بلوک شاخه دسته‌ای راست جدید و ایسکمی حاد پیشین می‌تواند موجب یک بلوک شاخه دسته‌ای چپ جدید شود. معمولاً هیچ درمانی برای بلوک شاخه دسته‌ای انجام نمی‌شود.
انقباض زودرس دهلیزی یا اکستراسیستول (APC):
گاهی اوقات ممکن است یک ریتم به وسیله ایمپالس‌هایی‌که از خارج گره سینوسی– دهلیزی‌SA سرچشمه گرفته باشند، متوقف شود. این ایمپالس‌ها قبل از اینکه یک دشارژ SA نرمال رخ دهد، اتفاق می‌افتند و در سراسر قلب انتشار پیدا می‌کنند، اگر میوکاردیوم (ماهیچه قلب) مقاوم نباشد، سبب می‌شوند تا به صورت زودرس منقبض شود. اکستراسیستول‌ها ممکن است از بالا (بالابطنی) یا از پایین (بطنی) گره دهلیزی بطنی سرچشمه بگیرند. اکستراسیستول‌ها ممکن است به صورت تکی یا در ردیف‌های کوتاه یا بلند اتفاق بیافتند.
انقباض زودرس بطنی(PVC):
ضربان‌های PVC یک شکل بسیار رایج از آریتمی‌ها می‌باشند. آنها یک شکل ضربان‌های قلبی غیر معمولی هستند که در آنها بطن به طور زودرس انقباض پیدا می‌کند. در طول یکPVC ، بطن قبل از اینکه دشارژ الکتریکی نرمال از گره SA فرا برسد، از نظر الکتریکی زودتر دشارژ شده و منقبض می‌گردد. این دشارژهای زودرس به دلیل تحریک‌پذیری الکتریکی عضله های قلبی بطن‌ها هستند. بعد از PVC سیستم الکتریکی قلب فوراً به حالت اولیه باز می‌گردد. این بازگردانی سبب یک توقف مختصر در ضربان قلبی می شود. ضربان PVC به وسیله منحنی‌های QRS پهن و گسترده شناخته می‌شود]5[.
ساختار کلی تحقیقدر این تحقیق ابتدا به بیان کلیات و روش انجام تحقیق به صورت خلاصه پرداخته شده است. در فصل دوم به مرور پژوهش‌های انجام شده در زمینه طبقه بندی سیکنال‌های قلبی و بیان روش کار آنها و مقایسه نتایج بدست آمده، پرداخته خواهد شد. در فصل سوم روش پیشنهادی به همراه توضیحات دقیق و فرمول آنها تشریح خواهد شد. در فصل چهارم مراحل شبیه‌سازی به صورت بخش به بخش بیان می‌شود. در فصل پنجم نتایج شبیه‌سازی و همچنین مقایسه با نتایج تحقیقات قبلی که در فصل دوم تشریج شده اند بیان می‌شود.

فصل دومپیشینه ‌پژوهش
2-1- مقدمههوشمند‌سازی فرآیند تشخیص بیماری‌های قلبی سالها است مورد بحث پژوهشگران تمامی کشور‌ها قرار گرفته است. این فرآیند شامل مراحلی است که طی آن سیگنال ECG به عنوان ورودی نرم افزار انتخاب می‌شود و انتظار این است که نرم افزار با دقت قابل قبولی سلامت یا بیماری و حتی نوع بیماری قلبی را تشخیص دهد. تمامی این نرم افزار‌ها پس از دریافت سیگنال، ویژگی‌های مناسب آن را استخراج و انتخاب کرده، سپس به تشخیص نوع بیماری می‌پردازد. در هر یک از مراحل بیان شده روش های گوناگونی وجود دارد که در این فصل به تحقیقات پیشین و روشی که مورد استفاده قرار گرفته است پرداخته خواهد شد.
معرفی پایگاه داده:سیگنال‌های نارسائی قلبی که از پایگاه داده MIT-BIH گرفته شده است، شامل 48 سیگنال قلب دوکاناله متشکل از 25 مرد از سنین 32-89 سال و 22 زن در سنین 23-89 سال با فرکانس نمونه‌برداری 360 هرتز و رزولوشن 12 بیت، که حدودا حاوی 650000 نمونه و تقریبا 2750 ضربان قلب در مدت زمان 30 دقیقه برای هر سیگنال می‌باشد. بیش از 109000 ضربان قلب در پایگاه فوق در قالب 15 نارسائی برچسب‌گذاری شده‌اند. از این سیگنال‌ها 45 سیگنال دارای lead II می‌باشند [11،24].
2-2- طبقه‌بندی سیگنال ECG با استفاده از موجک و شبکه عصبیپس از چند مرحله پیش پردازش از تبدیل موجک پیوسته برای استخراج ویژگی های سیگنال می‌شود. به دلیل زیاد بودن تعداد بردارهای استخراج شده توسط موجک از آنالیز PCA جهت کاهش ابعاد و به عبارتی انتخاب بهترین نمونه‌ها استفاده شده است.
شبکه عصبی چند لایه، طبقه‌بندی را بر روی شش کلاس که شامل سیگنال نرمال و 5 اریتمی قلبی که از گروهی خاص از سیگنال ECG بیماران پایگاه داده MIT-BIH انجام داده است. نمودار گرافیکی روش به کار رفته در این تحقیق در شکل 2-1 نشان داده شده است]7[.

شکل 2-1 :مراحل طبقه بندی 6 آریتمی
2-3- طبقه‌بندی سیگنال ECG با استفاده ازموجک و خواص مورفولوژیک و شبکه عصبیدر این پژوهش پس از پیش‌پردازش، 15 ویژگی زمانی و 15 ویژگی از تبدیل موجک انتخاب شده است و برای کاهش ابعاد این ویژگی ها از روش PCA استفاده شد که نتیجه آن انتخاب 8 ویژگی از بهترین ویژگی‌های هر کلاس بوده است. شبکه عصبی پرسپترون چند لایه و شبکه عصبی پایه شعاعی به صورت ترکیبی طبقه‌بندی را انجام می دهد. در این تحقیق نشان داده شده است که ساختار ترکیبی شبکه عصبی دارای نتایجی به مراتب بهتر از شبکه عصبی MLP می‌باشد]4[.
2-4- طبقه‌بندی سیگنال ECG با استفاده از تبدیل موجک و شبکه عصبی فازیدر این پژوهش از استخراج ویژگی موجک به همراه شبکه عصبی فازی برای شناسایی انقباضات زودرس بطنی PVC استفاده کرده‌اند. ایده اصلی و مزیت مهم این تحقیق استفاده مجدد از اطلاعات تولید شده در مرحله تشخیصQRS ، که یک مرحله اساسی برای بیشتر الگوریتم های طبقه بندی ECG است، می باشد. طول مدت زمان کمپلکس QRS در مقیاس سه و سطح زیر کمپلکس QRS در مقیاس چهار به عنوان ویژگی های مشخصه انتخاب شده اند. پس از نرمالیزاسیون، طبقه بندی PVC با استفاده از شبکه عصبی فازی روی سیگنال ECG تعدادی خاص از بیماران انجام شده است. دو مزیت اولیه استفاده از موجک یکسان برای دو مرحله تشخیص QRS و طبقه‌بندی PVC، محاسبات کمتر و پیچیدگی کمتر در هنگام پیاده سازی واقعی است]9[.
2-5- طبقه‌بندی سیگنال ECG با استفاده از تبدیل ویولت و شبکه عصبی مصنوعی و الگوریتم پرندگانویژگی‌های شکلی تبدیل موجک، با استفاده از آنالیز PCA به یک فضای ویژگی با ابعاد کمتر نگاشت داده شده اند، و همچنین ویژگی‌های زمانی از داده های ECG استخراج شده اند. برای قسمت تشخیص الگو از شبکه‌های عصبی مصنوعی رو به جلو که هر کدام با استفاده از تکنیک الگوریتم پرندگان چند هدفه استفاده شده است. در این تحقیق،‌سیستم طبقه‌بندی ارائه شده می تواند با آموزش ساختارهای شبکه بهینه به تغییرات اساسی در الگوهای ECG یک بیمار خاص سازگار شده و بنابراین می‌تواند به درصد دقت‌های بالاتری در دسته داده‌های بزرگ دست پیدا کند.
بر روی کل داده‌های پایگاه داده میزان میانگین معیار عملکردهای دقت حساسیت برای روش پیشنهادی برای شناسایی ضربان‌های اکتوپیک بطنی (VEB) و ضربان‌های اکتوپیک بالابطنی (SVEB) انجام شده است]10[.
2-6- طبقه‌بندی آریتمی‌های قلبی با استفاده از SVMدر این پژوهش با تحلیل سیگنال ECG، ویژگی‌های آن با ترکیبی از تبدیل ویولت و مدل AR استخراج شده اند. با چنین تلفیقی روش های رایج در تشخیص بیماری‌های قلبی بهینه شده‌اند. سپس از یک طبقه‌بندی‌کننده ماشین بردار پشتیبان با هسته گوسین به منظور طبقه‌بندی خودکار پنج نوع آریتمی قلبی استفاده شده است]2[.
2-7- طبقه‌بندی آریتمی دهلیزی بطنیدر این پژوهش یک الگوریتم کارآمد تشخیص و طبقه‌بندی ECG تک کاناله مبتنی بر تبدیل موجک را اجرا نموده و به منظور تشخیص و طبقه‌بندی برخی آریتمی‌های خطرناک بطنی به کار گرفته و بهبود داده شده است. در اولین مرحله، کمپلکس‌های QRS تشخیص داده می‌شوند. سپس مشخصات هر QRS با شناسایی و تعیین قله‌های مو ج های تشکیل دهنده آن و نیز نقاط شروع و پایان کمپلکس QRS تکمیل می‌گردد. در ادامه قله‌های موج هایT ، P و نیز نقاط شروع و پایان هر یک تعیین می‌شود . این الگوریتم را با استفاده از داده‌های حاشیه نویسی شده معروف MIT/BIH Arrhythmia Database و QT Database ارزیابی شده اند. در الگوریتم پیشنهادی با بکارگیر‌ی موجک اسپلاین درجه دوم (quadratic spline)، کمپلکس QRS و همچنین موجهای T و P از انواع نویزها و تداخل‌های ناخواسته تفکیک شده و تشخیص آریتمی‌های حاد در بانک اطلاعاتی سیگنال‌های الکتروکاردیوگرام استاندارد حتی در حضور نویز و تداخل‌های ناخواسته نیز امکان پذیر می‌گردد. با استفاده از الگوریتم پیشنهادی تشخیص آریتمی‌های تاکیکاردی بطنی VT، تاکیکاردی فوق بطنی SVT، فیبریلاسیون بطنی VFIB، فلاتر بطنی VFL، فلاتر دهلیزی AFL، و آریتمی فیبریلاسیون دهلیزی AFIB، انجام شده است]12[.
2-8- طبقه‌بندی سیگنال الکترو‌کاردیو‌گرام با طبقه‌بند ماشین بردار پشتیبان و الگوریتم PSOدر این پژوهش از ویژگی‌های زمانی و مورفولوژیک استفاده شده است. آزمایش از روش‌های طبقه بند RBF و kNN و SVM به عمل آمده که نتایج برتری طبقه‌بند SVM با هسته گوسی را نشان می‌دهد. همچنین برای تنظیم پارامترهای SVM از الگوریتم بهینه‌ساز PSO استفاده شده است که باعث بهبود عملکرد طبقه‌بندی SVM می شود. در این مقاله از 250 و500و750 ضربان اموزش استفاده شده که با توجه به نتایج آزمایش عملکرد طبقه‌بند با 750 داده اموزش دقت 93.27% است]3[.
2-9- طبقه‌بندی آریتمی‌های قلبی با استفاده از PSOدر این پژوهش یک سیستم جدید برای طبقه‌بندی سه نوع ضربان قلب شامل ضربان نرمال و دو آریتمی قلبی ارائه شده است. این سیستم شامل سه ماژول اصلی – یک ماژول استخراج ویژگی، یک ماژول طبقه بندی و یک ماژول بهینه‌سازی‌ است. در ماژول استخراج ویژگی ترکیبی مناسب از ویژگی‌های شکلی و زمانی ایجاد می‌شود. در ماژول طبقه بندی یک کلاس بند چند طبقه بر پایه ماشین بردار پشتیبان ارائه شده است. در ماژول بهینه‌سازی از الگوریتم اجتماع ذرات برای یافتن بهترین ویژگی‌ها استفاده شده است. نتایج شبیه سازی دقت مناسبی داشت و این در حالی است که در بدست آمدن این سطح دقت،فقط مقدار کمی از ویژگی‌ها استفاده شده است]14[.
2-10- رویکرد ترکیبی در طبقه‌بندی سرطانمدلی مبتنی بر فیلتر و رپر را جهت دسته‌بندی نشان گر سرطان برای انتخاب ژن در داده‌های ریز آرایه ارائه شده است. نتایج مدل ترکیبی ان‌ها که از نرخ فیشر به عنوان فیلتر استفاده می‌کند،روی چندین مجموعه داده واقعی دقت کلاس‌بندی بسیار بهتری نسبت به مدل تنها رپر، نشان می‌دهد. مدل ترکیبی دو مرحله‌ای ارائه شده در این پژوهش ویژگی‌های مناسب را بر اساس معیار اماری حداکثر وابستگی و حداقل افزونگی انتخاب می‌کند. در مرحله اول مدل از معیار حداکثر ارتباط و حداقل افزونگی برای انتخاب زیر مجموعه بهینه ویژگی‌ها بهره می‌برد. در مرحله دوم از الگوریتم‌های کلاسیک رو به جلو وعقب گرد برای جستجو در زیر مجموعه‌های مرحله اول استفاده می‌کند. نتایج تجربی مدل آنها حاکی از عملکرد بهتر این روش نسبت به روش فیلتر حداکثر وابستگی می‌باشد]15[.
2-11- دسته‌بندی آریتمی‌های قلبی بر مینای تبدیل موجک و SVMدر این پژوهش یک روش برای دسته‌بندی آریتمی‌های قلبی ارائه شده است که تعداد 5 آریتمی از بانک اطلاعاتی Physionet انتخاب شده و آریتمی‌ها به زمان های 6 ثانیه تقسیم شده و برای هر قطعه زمانی ضرایب تبدیل موجک به عنوان بردار ویژگی آن قطعه محاسبه شده و از ماشین بردار پشتیبان SVM برای دسته‌بندی آریتمی‌ها استفاده شده است. دسته‌بندی‌کننده‌های SVM را با بردارهای ویژگی قطعات آموزش داده و برای دسته‌بندی یک آریتمی مجهول، بردارهای ویژگی زمانی آن به SVM ها اعمال می‌شود]16[.
2-12- طبقه‌بندی سیگنال ECG با استفاده از خواص مورفولوژیدر این پژوهش یک روش جهت کلاس‌بندی ضربان از یک مجموعه داده بزرگ با آموزش شبکه عصبی و استفاده از موجک و ویژگی‌های زمان‌بندی ارائه داده اند. آنها دریافتند که مقیاس چهارم از تبدیل ویولت دوتایی با ویولت مرتبه دوم همراه با نرخ فاصله قبل و بعد از R-R در تمایز نرمال و PVC دیگر ضربان‌ها بسیار مؤثر است]17[.
2-13- انتخاب ویژگی با استفاده از الگوریتم فاخته باینریدر این پژوهش،انتخاب ویژگی جدید به نام جستجو فاخته دودویی، که در رفتار پرندگان فاخته است پیشنهاد شده است. آزمایش‌های انجام شده در زمینه تشخیص سرعت در سیستم‌های توزیع قدرت در دو مجموعه داده به دست آمده از یک شرکت برق برزیل انجام شدو توانایی این روش در برابر با چندین تکنیک بهینه‌سازی دیگر را نشان می‌دهد]18[.
2-14- انتخاب ویژگی با استفاده از الگوریتم فاختهمعمولا برای پیدا کردن مجموعه داده‌ها با مقدار زیادی از ویژگی‌ها روبرو هستیم که برخی از این ویژگی های مناسب نیستند. در این زمینه، یکی از استراتژی‌های مورد استفاده برای مقابله با این مشکل،انجام یک فرآیند انتخاب ویژگی به منظور ساخت یک زیر مجموعه از ویژگی‌های است که می تواند بهترین مجموعه داده را نشان دهد. مطالعات متعددی با استفاده از تکنیک‌های بهینه‌سازی الهام گرفته از طبیعت وجود دارد. در این پژوهش، ما از الگوریتم جستجو فاخته (CS) در زمینه انتخاب ویژگی استفاده می‌کنیم. برای این منظور، یک نسخه باینری از جستجو فاخته، یعنی BCS، بکار گرفته می‌شود. شبیه‌سازی و مقایسه BCS با نسخه‌های باینری از بت الگوریتم، الگوریتم کرم شب‌تاب و ذرات بهینه‌سازی انجام شده است که BCS نتایج منطقی و مناسب‌تری را نشان می‌دهد]19[.

فصل سوممعرفی الگوریتم‌ها و روش‌های پردازش سیگنال ECG
3-1- مقدمهدر این فصل به بررسی تئوری روش پیشنهادی، جزئیات و تشریح فرمول‌های مربوطه خواهیم پرداخت که شامل تکنیک‌ها و فیلترهای موجود در بخش پیش پردازش، روش‌های استخراج ویژگی از سیگنال پیش پردازش شده، روش انتخاب ویژگی‌ها و طبقه‌بند می‌باشد.
3-2- آنالیز موجکموجک یک شکل موج با طول موثر محدود و متوسط صفر است. شکل 3-1 موجک را با موج سینوسی که مبنای آنالیز فوریه است مقایسه می‌کند. موج سینوسی طول محدود ندارد و همواره قابل پیش بینی است، اما موجک‌ها تمایل دارند که نامنظم و نامتقارن باشند.
center0
00

شکل 3-1: سیگنال سینوسی و موجک
آنالیز فوریه تجزیه یک سیگنال به موجهای سینوسی از فرکانسهای مختلف است. به شکل مشابه، آنالیز موجک تجزیه یک سیگنال به نسخه‌های شیفت یافته و مقیاس شده از موجک اصلی یا مادر می‌باشد. با توجه به شکل‌های موجک و موج سینوسی، می توان دید که سیگنال‌های با تغییرات شدید بهتر می تواند با موجک نامنظم آنالیز شوند. همچنین مشخصه‌های محلی نیز توسط موجک بهتر توصیف می شوند، چون موجک‌ها محدوده محلی دارند. تبدیل موجک پیوسته (CWT) و تبدیل موجک گسسته (DWT) دو تبدیل مهم در آنالیز موجک می باشد]20[.
3-2-1- تبدیل موج پیوسته (CWT)تبدیل پیوسته موجک روی تابع پیوسته و انتگرال پذیر f(x) نسبت به موجک حقیقی Ψ(x) از رابطه زیر حاصل می‌شود:
527301126035(3-1)
020000(3-1)
WΨs, τ=-+fx Ψs,τx dx , Ψs,τ(x)=1sΨ(x-τs)
τ , s به ترتیب بیانگر مقیاس و زمان هستند]20[.
3-2-2- تبدیل موجک گسستهضرایب موجک در هر مقیاس ممکن، مقادیر بسیار زیادی عدد تولید می‌کند. راه حل کاهش تعداد آنها را می توان از تبدیل گسسته موجک (DWT) بدست آورد.
یک راه مناسب، استفاده از فیلترها در سال 1988 توسط مالات ارایه شد و توسعه یافت]21[.
3-3-2-2- تجزیه چند سطحیفرایند تجزیه می‌تواند با تقریب‌های متوالی که به نوبت تجزیه می‌شوند، تکرار شود.این عمل منجر به ایجاد درخت تجزیه موجک می‌باشد.شکل 3-2 یک درخت تجزیه موجک سه سطحی را نمایش می‌دهد]21[.

شکل 3-2: نمایی از تحلیل موجک چند وضوحی با ساختار سلسله مراتبی توسط ضرایب تقریبی و جزیی تا سطح تجزیه 3 که در آن، A مبین ضرایب تقریب و D نیز ضرایب جزئی را نشان میدهد.
شکل (3-3) ساختار فیلتری را نشان میدهد که به آن بانک فیلتری میگویند. در این ساختار بعد از اعمال هر فیلتر با کاهش نمونههای زمانی، رزولوشن فرکانسی را افزایش میدهند. بدین ترتیب که بعد از اعمال فیلتر پایینگذر در هر مرحله، با کاهش رزولوشن زمانی به میزان نصف مرحله قبل، رزولوشن فرکانسی را دو برابر میشود.

شکل 3-3: شمایی از ساختار فیلتر بانک را برای تولید ضرایب جزیی و تقریب تبدیل موجک توسط فیلترهای پایینگذر (g) و بالاگذر (h) تا سطح تجزیه سوم نشان میدهد.
3-2-4- انتخاب موجک مادرضرایب تبدیل موجک تحت تاثیر فیلترهای اعمال شده به سیگنال هستند، که این فیلترها توسط موجک مادر و تابع مقیاس بدست میآیند. از اینرو، ضرایب تبدیل موجک با توجه به تابع موجک مادر میتواند دارای شدت و اندازههای مختلف باشد. هریک از موجکهای مادر دارای خواصی هستند که آنها را از یکدیگر جدا میسازد. یکی از پرکاربردترین توابع موجک، تابع موجک مادر دابیچیز است .که برخی توابع مادر مانند سیملت و کافلت از روی آن ساخته میشود و دارای ویژگیهای متفاوت نسبت به دابیچیز هستند. از آنجاییکه توابع موجک مادر از لحاظ نوع و مرتبه متفاوت میباشند، لذا ضرایب موجک آنها از لحاظ زمانی و اندازه دامنه متفاوت است. این نکته قابل ذکر است که ضرایب خروجی فیلتر پائین گذر(g(n)) شکل اولیه سیگنال را دنبال میکنند، یعنی کلیات سیگنال معادل فرکانسهای پایین را دربردارند و ضرایب تقریب نام گرفتند. همچنین ضرایب خروجی فیلتر بالاگذر(h(n))، جزئیات سیگنال را دربردارند، به همین دلیل به این ضرایب، جزییات گفته میشود و نماینده فرکانسهای بالا میباشند[37].
انتخاب موجک مادر نقش مهمی در استخراج ویژگی سیگنال ها به خصوص سیگنال ECG دارد. از این رو ما از بین موجک‌های مختلف، موجکی را انتخاب می‌نماییم که بیشترین شباهت به سیگنال ECG داشته باشد.در شکل 3-6 انواع دابیچیزها نشان داده شده است در بین موجک‌های مادر، موجک دابیچیز 6 بیشترین شباهت به سیگنال ECG را دارد که در شکل 3-7 سیگنال ECG با 8 سطح تجزیه و 8 سیگنال جزییات نشان داده شده است[36].
-40420531215

020000

شکل 3-6: انواع دابیچیز

شکل 3-7: سیگنال ECG به همراه 8 سطح تجزیه با db6 ]36[
3-2-4- ویژگی‌های استخراج شده از ویولتاستفاده از پارامترهای جدول3-1 به جای استفاده از ضرایب ویولت توصیه شده است]35] [23[.
ویژگی های موجک استخراج شده
انرژی
درصد انرژی طول سیگنال
واریانس ضرایب ویولت
انحراف معیار ضرایب ویولت
مقدار حداکثرتوزیع داده ها
انحراف داده ها
انحراف استاندارد
میانگین داده ها
جدول 3-1 ویژگی ویولت برای تشخیص مولفه های شناختی از ECG
3-3- ویژگی زمانیتشخیص پزشک به طور عمده مبتنی بر اطلاعات زمانی‌ و ریخت‌شناسی استخراج شده از سیگنال الکتروکاردیوگرافی است. این در حالی است که در برخی از شرایط ویژگی‌های به دست آمده از تحلیل موجک بر روی سیگنال‌های قلبی، به تنهایی از تمایز کافی برای طبقه‌بندی برخوردار نیستند. از این رو، استفاده از دیگر مشخصه‌های موجود در سیگنال‌های قلبی به جهت طبقه‌بندی بیمار‌یهای قلبی ضروری به نظر می‌رسد.
برای توصیف کاملتر سیگنال الکتروکاردیوگرافی، علاوه بر ویژگی‌های موجک از ویژگی‌های زمانی نیز در این تحقیق استفاده شده است. ویژگی‌های زمانی مورد استفاده شامل نه ویژگی زمانی برای تشخیص مولفه‌های شناختی از سیگنال ECG هستند که نماد اختصاری آ نها در جدول 3-2 بیان شده است]4[.

جدول 3-2 : ویژگی زمانی برای تشخیص مولفه‌های شناختی از ECG
ویژگی نماد اختصاری
دامنه ماکزیمم سیگنال AMP
دامنه مینیمم سیگنال -AMP
ناحیه مثبت PAR
ناحیه منفی NAR
قدر مطلق ناحیه منفی NANR
مجموع ناحیه TAR
قدر مطلق مجموع ناحیه ATAR
قدر مطلق مجموع ناحیه TAAR
پیک تا پیک سیگنال PP
3-4- استخراج ویژگی با مدل خودبازگشتی(AR)55016401019175(3-2)
020000(3-2)
روش مدلسازی خود بازگشتی یکی از مدل‌های اتفاقی است که برای نمایش سیگنال‌های غیر ایستا بسیار مورد استفاده می‌باشد. در این مدل، مقادیر جاری سیگنال به صورت جمع خطی از تعداد محدودی از مقادیر قبلی بعلاوه خطای e(n) بیان می‌شود. بنابر این پردازش به صورت 3-2 مدل می‌شود:
xn=i=1pai.xn-1+e[n]
به طوری‌که می توان گفت x(n) سیگنال مورد نظر، e(n) نویز سفید با میانگین صفر و واریانس مجهول، ai ها ضرایب و p مرتبه مدل AR می‌باشد. در این معادله متغیر x(n) به مقادیر قبلی خودش وابسته است. روشهای متعددی بطور رایج برای تخمین ضرایب AR استفاده می‌شود]2[.
3-5- استراتژی انتخاب ویژگیانتخاب ویژگی فرآیندی است که ویژگی‌های با قدرت تشخیص بالاتر و موثرتر را از مجموعه‌های داده برای انجام اعمال داده کاوی انتخاب می‌کند. مرحله مقدماتی فرایند انتخاب ویژگی عبارتند از: شناسایی مجموعه ویژگی‌ها و جستجو برای بهترین زیر مجموعه. مجموعه پارامترها اغلب شامل الگوریتم‌های یادگیری الگوریتم های انتخاب و فرآیندهای تخمین خطا می‌باشند. البته این مسئله کاملا روشن است که هیچ مجموعه ویژگی به تنهایی برای کلیه‌ی مسائل داده کاوی کارا نمی‌باشد.
الگوریتم‌های انتخاب ویژگی به طور کلی به سه دسته تقسیم می‌شوند: مدل‌های فیلتر، مدل‌های رپر و مدل‌های ترکیبی]13[. مدل‌های فیلتر از مشخصات ذاتی یا آماری ویژگی‌های مجموعه‌های داده استفاده می کنند و از هر گونه الگوریتم یادگیری مستقل اند. چنین رویه‌هایی شامل ماشین یادگیری نمی‌باشند و برای مجموعه داده‌های با ابعاد بالا موثر بوده و پیشنهاد می‌شوند. در مقابل مدل‌های رپر از ماشین‌های یادگیری استفاده کرده و زیرمجموعه ویژگی‌ها را بر اساس تخمین کارایی انتخاب می‌کنند. در مقایسه با فیلتر‌ها رپرها دارای زمان و هزینه‌های محاسباتی بالاتری بوده و برای مجموعه داده‌های با ابعاد بالا مناسب نمی‌باشد. مزیت اصلی رپرها در دقت بالای پیش‌بینی آنها است. نتایج جستجوی رپرها برای یافتن بهترین زیر مجموعه ویژگی بسیار بالاتر از فیلتر‌ها گزارش شده است. برای انتخاب ویژگی خوب،تلاش اصلی فرایند جستجو باید شناخت ویژگی‌های موثر و غیر افزونه باشد]25[. اغلب روش‌های ترکیبی فیلتر و رپر از فیلترها جهت رتبه‌بندی ویژگی‌ها و کاهش تعداد ویژگی‌های کاندید استفاده می‌کنند. به طور کلی مدل‌های ترکیبی بر اساس رویه‌های ترتیبی دو مرحله‌ای کار می‌کنند.در مرحله اول معمولا براساس فیلترها تعداد ویژگی‌های مورد نظر برای مرحله دوم کاهش می‌یابند. سپس با استفاده از مجموعه کاهش یافته یک رویه رپر در مرحله دوم جهت انتخاب ویژگی‌های مطلوب اعمال می‌شود.
3-6- تحلیل مولفه اصلی (PCA)در روش تحلیل مؤلفه‌های اصلی، محور‌های مختصات جدیدی برای داده‌ها تعریف می‌شود به گونه ای که نخستین محور در جهتی قرار می‌گیرد که واریانس داده‌ها بیشینه است و دومین محور نیز عمود بر محور اول و در جهتی که واریانس داده ها بیشینه باشد،در نظر گرفته می‌شود و به همین ترتیب، محورهای بعدی عمود بر تمامی محورهای قبلی به گونه‌ای قرار می‌گیرند که واریانس داده‌ها در آن جهت بیشینه باشد]4[.تحلیل مولفه اصلی یکی از روش‌های مرسوم استخراج ویژگی است که در بسیاری از پژوهش‌ها به دلیل سادگی و سرعت بالا در پردازش از آن استفاده می‌شود]26[. تکنیک PCA بهترین روش برای کاهش ابعاد داده به صورت خطی می‌باشد یعنی با حذف ضرایب کم اهمیت بدست آمده از این تبدیل،اطلاعات از دست رفته نسبت به روشهای دیگر کمتر است.
فرض کنید ماتریس ورودی X دارای NT نمونه و n ویژگی است و NT نمونه باید در C گروه قرار گیرند، میانگین و کوواریانس داده با توجه به روابط (3-3) و (3-4) محاسبه میشوند [38]:
md=1NTi=1cj=1Nixi,j(3-3) COV=1NTi=1cj=1Ni(xi,j-md)(xi,j-md)T (3-4)
در مرحلهی بعد، مقادیر ویژه و بردارهای ویژه از روی ماتریس کواریانس محاسبه می‌شوند. سپس، تعداد k مقدار ویژه بزرگتر از n مقدار ویژه انتخاب می‌شوند. حال ماتریس ورودی X تحت ماتریس بردار ویژه P با تعداد k ویژگی، به فضای تحلیل مولفه‌اصلی تبدیل می‌شود:
(3-5) Yij=[P1,P2,…,Pk]TXij3-7- روش بیشترین وابستگی و کمترین افزونگی (mRMR)در بسیاری از کاربرد‌های شناسایی آماری الگو، انتخاب زیرمجموعه‌ای از مجموعه ویژگی‌ها می‌تواند سبب کاهش خطای دقت طبقه‌بندی گردد. هدف روش بیشترین وابستگی و کمترین افزونگی، انتخاب زیرمجموعه از فضای ویژگی مبتنی بر مفهوم همبستگی و کاهش افزونگی اطلاعات می‌باشد. فرض کنید فضای داده ورودی D، شامل N نمونه و M ویژگی است و c نیز برچسب مربوط به هر گروه باشد. در این حالت، هدف انتخاب بهینه m ویژگی از فضای M بعدی است بطوریکه هر نمونه متعلق به گروه c باشد. از آنجاییکه تعداد زیرمجموعه‌های ممکن 2M بوده و تعداد زیرمجمو ع‌هایی که ابعادشان کوچکتر از m باشد نیز i=1mMi می‌باشد جستجوی کامل زیرمجموعه‌های ویژگی بسیار دشوار است. از اینرو، روش‌های جستجوی ترتیبی مانند پیش رو ترتیبی و شناور پیش رو ترتیبی، برای جستجوی فضای کامل زیرمجموعه‌ها در فضای ویژگی پیشنهاد می‌شوند]29[. شرط توصیف بهینه معادل با کمترین خطای دقت طبقه‌بندی درنظر گرفته می‌شود، بطوریکه در طبقه‌بندی بی سرپرست،‌کمترین خطا زمانی رخ می‌دهد که بیشترین وابستگی آماری دادگان در زیر فضای Rm گروه هدف c پیدا شود. از این شیوه به عنوان شرط بیشترین وابستگی یاد می‌شود. یکی از روش‌های رایج برای بررسی مفهوم بیشترین وابستگی، روش بیشترین ارتباط است که مقصود آن بالاترین ارتباط هر ویژگی با گروه هدف c می‌باشد. بطور عام، ارتباط برحسب همبستگی و یا اطلاعات متقابل دو متغیر معرفی می‌شود. اطلاعات متقابل دو متغیر x و y، بر حسب توابع چگالی احتمال بصورت زیر تعریف می‌شود:
5196205-1905(3-6)
4000020000(3-6)
IX,Y=xyp(X,Y)log2p(X,Y)pYp(X)
در انتخاب ویژگی بر اساس بیشترین ارتباط، بیشترین اطلاعات متقابل I(xi,c) بین ویژگی‌های منتخب xi گروه هدف c صورت می‌گیرد که مبین بیشترین وابستگی ویژگی به هدف مربوط می‌باشد. در روش‌های جستجوی متوالی، m



قیمت: 11200 تومان

Leave a Reply

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *