ارشددانلود - \"”(سایت مرجع مقاله )”\"

متن کامل پایان نامه را در سایت منبع fuka.ir می توانید ببینید

5. مسایل تخصیص نمایی : مساله‌ای را بیان می‌کند که n مرکز مانند n ماشین که بین آنها جریان برقرار است به‌گونه‌ای در n مکان قرار داده شوند تا هزینه کل مینیمم شود. اگر چهار ماشین داشته باشیم که بخواهیم مستقر کنیم، چهار ترکیب ممکن وجود خواهد داشت. برای مساله بیست ماشین، بیست جواب ممکن وجود دارد که در حدود 1018*2 ارزیابی نیاز خواهد داشت که این کار حتی برای کامپیوترهای پرسرعت امروزی دشوار است. از این رو این مسایل در دسته مسایل بسیار پیچیده قرار دارند و حل دقیق آنها بسیار مشکل و یا غیر ممکن است.
برخی از عناصر در دسته بندی مسایل مکان‌یابی نقش مهمی دارند. در واقع مسایل مکان ‌یابی علاوه بر قرار گرفتن در دسته‌بندی یادشده می‌توانند به صورتهای مختلفی دسته بندی شوند، مانند مساله p- میانه با محدودیت تقاضا و مساله p- میانه بدون محدودیت تقاضا. از این رو در حین دسته بندی مسایل مکان‌یابی باید عناصری مانند انواع مراکز جدید، مکان مراکز موجود، بر‌هم‌کنش مراکز موجود و جدید، مشخصات فضای جواب، اندازه فاصله، تلفیق با سایر مسایل، تقاضا، ظرفیت، نوع مراکز، قطعی و احتمالی بودن داده ها، تواتر اجرا، تنوع محصول و تابع هدف مورد توجه قرار گیرند.
اهمیت و ضرورت مکانیابیتحلیل مسائل مکانیابی و تصمیم گیری در خصوص مکان تسهیلات از مسائل بسیار مهم در تصمیم گیری دولت ها ، سازمانها و شرکت ها محسوب می شود. بدون شک مکانیابی درست تسهیلات اثرات بسیار زیادی در منافع اقتصادی ، ارائه خدمات مناسب ورضایت مشتریان دارد و به همین دلیل تحلیل مسائل مکانیابی یکی از مسائل مورد علاقه دانشمندان تحقیق در عملیات و علوم مدیریت بوده و پیشرفت های قابل توجهی نیز در این زمینه حاصل شده است . مطالعات مکان‌یابی یکی از اقدامهای کلیدی در فرایند احداث واحدهای صنعتی یا خدماتی محسوب می شود که توجه به این مهم در موفقیت مراکز، نقش بسزایی دارد. اهمیت این مطالعات به اندازه‌ای است که به تازگی در مورد مراکز فعال نیز این مطالعات دوباره صورت می گیرد و در برخی از موارد منجر به تغییر محل واحد صنعتی نیز می شود. در طول سه قرن گذشته مسائل مکانیابی متعددی در قالب فرضیات و تمرینات ریاضیاتی پدیدار و ارائه گشته اند. اما ظاهرا طرح مساله مکانیابی به طور کلی و رسمی برای نخستین بار به وبر (Weber 1909) نسبت داده شده است. امروزه نیز تعیین محل مناسب برای استقرار تجهیزات یا مراکز خدماتی در بخش های صنعتی و خدماتی ، موضوع مهمی بوده است و در چند دهه اخیر توجه بسیاری را به خود جلب کرده است.
اکنون به بیان موارد کلیدی که مدل های ریاضی مکان یابی برای تعیین آنها طراحی می شوند می پردازیم که عبارتند از :
تعیین تعداد مراکز تولیدی که باید مستقر شوند.
تعیین مکان مناسب برای استقرار هر کدام از این مراکز .
تعیین اندازه و ظرفیت هر کدام از این مراکز.
تعیین نحوه تخصیص تقاضای خدمات به هر یک از مراکز.
تعیین موارد فوق وابسته به محیطی است که مساله مکانیابی تحت شرایط آن حل می شود و نیز به اهدافی که در پس حل مساله نهفته است. در بعضی موارد، مثل مکانیابی مراکز خدمات درمانی اورژانسی ، هدف هر چه نزدیکتر بودن این مراکز به کاربران از یک طرف و پوشش دادن به تقاضای همه کاربران از طرف دیگر می باشد. اما مثلا در مکانیابی یک مساله بازیابی زباله های رادیواکتیو هدف این خواهد بود که چنین مراکزی تا آنجا که امکان دارد از مناطق شهری و پر جمعیت دور باشند و یا در بخش های تولیدی و اقتصادی هدف کاهش هزینه های کل می باشد. مختصر اینکه موفقیت یا شکست مراکز تسهیلاتی در هر کدام از بخش های دولتی و خصوصی بستگی کامل به مکان های انتخابی برای استقرار این مراکز دارد [7] .

متن کامل در سایت امید فایل 

مسایل مکان‌یابی از تنوع بسیار زیادی برخوردارند و در هر یک از آنها، هدفهای ویژه‌ای دنبال می‌شود. برای دستیابی به هدف هر مساله، باید از روشی ویژه برای حل آن مساله استفاده کرد و هنگام مطالعات نیز از درستی اطلاعات مورد استفاده اطمینان حاصل کرد [8] .
مکان‌یابی تسهیلات و مدیریت زنجیره تأمین
عملکرد زنجیره تامین تحت تاثیر چندین عامل که با تصمیم گیری در مورد مکان تولید آغاز می شود، سنجیده می گردد [11]. مدل‌های تعیین محل تسهیلات، نقش مهمی در طراحی و برنامه‌ریزی زنجیره تأمین دارند. اصولاً در طراحی و برنامه‌ریزی زنجیره تأمین 3 سطح بر اساس افق زمانی: استراتژیک، تاکتیکی و عملیاتی وجود دارد. دکتر سیم‌چی در مقاله خود نوشته است: «سطح استراتژی با تصمیماتی ارتباط دارد که اثراتی بلندمدت بر سازمان شما می‌گذارد. این موارد، شامل تصمیماتی در خصوص: تعداد، محل، ظرفیت انبار، ظرفیت تولید یا جریان مواد ‌اولیه در شبکه لجستیک است». این جملات، ارتباط بین مدل‌های مکان‌یابی و مدیریت استراتژیک زنجیره تأمین را آشکار نشان می‌دهند.
شبکه توزیع شرکت می‌بایستی مناسب‌ترین خدمات را با کمترین قیمت عرضه کند. در برخی موارد، شرکت ممکن است با طراحی مجدد شبکه توزیع خود، علاوه بر صرفه‌جویی میلیون‌ها دلاری در هزینه‌های لجستیک، سطح کیفیت خدمات یا کالای خود را افزایش دهد. برای رسیدن به این هدف، شبکه ایده‌آل می‌بایستی اقدام به ایجاد شبکه انبارش برای حمایت از تأمین خرده‌فروشی‌های خود کند». این گفتار متضمن اهمیت مدل‌های مختلف مکان‌یابی تسهیلات برای مشخص شدن بهترین وضعیت پیکره‌بندی زنجیره تأمین است و بر رابطه متقابل سطوح استراتژی و تاکتیکی - عملیاتی تأکید دارد [12] .
مکانیابی نقاط توزیع شبکه های هاب و اسپوک
شبکه های هاب و اسپوک رده ای خاص از شبکه های لجستیک هستند که در آنها به جای برقراری ارتباط کامل، انتقال جریان به صورت غیر مستقیم و توسط تعدادی نقاط واسطه ای ، تحت عنوان هاب صورت می گیرد، بدین ترتیب جریان گره های غیر هاب که اصطلاحا اسپوک خوانده می شوند، از طریق مسیری که از یک یا دو هاب عبور می کند به مقصد مورد نظر تحویل می شود.
پس مساله پیدا کردن موقعیت و مکان p هاب است و تخصیص باقیمانده گره ها به این هاب هاست به طوریکه کل هزینه انتقال مینیمم شود.
جریان نشات گرفته از مبدا i ابتدا به هابی نظیر k انتقال می یابد و سپس با جریان سایر مبادی متصل به k که به سوی مقصد j جاری شده اند یکپارچه شده و به هاب دیگری نظیر m که گره j به آن تخصیص یافته است منتقل می شود. این جریان در هاب m با سایر جریان ها با مقصد j هم مسیر شده و به آن تحویل داده می شود. در صورتیکه هر دو گره مبدا و مقصد هاب باشند ، جریان آنها به طور مستقیم انتقال می یابد، در غیر این صورت جریان حداقل از یک هاب میانی نظیر m نیز می گذرد. در ( REF _Ref347006388 * MERGEFORMAT شکل ‏12) نمونه ای از شبکه هاب و اسپوک دیده می شود که جریان از گره i به گره j به کمک هاب های k و m انتقال یافته است.

شکل STYLEREF 1 s ‏1 SEQ شکل * ARABIC s 1 2: نمونه ای از شبکه هاب و اسپوک - جریان از گره i به گره j به کمک هاب های k و m انتقال یافته است.
در انتقال غیر مستقیم ،هزینه انتقال واحد جریان از مبدا iبه مقصد j از طریق هاب های k وm شامل سه جزء می باشد:
هزینه جمع آوری : جابه جایی جریان از مبدا i به هاب k
هزینه انتقال : جابه جایی جریان از هاب k به هاب m
هزینه توزیع : جابه جایی جریان از هاب m به مقصد j
انواع مسائل مکانیابی هاب مسائل مکانیابی هاب شامل طبقات و بخشهای مختلفی است که هر کدام از این بخش ها مکانیابی تسهیلات را با در نظر گرفتن هدف و فرضیات خاصی انجام می دهند. انواع مختلف مکانیابی هاب عبارتند از:
مساله مکانیابی p- هاب میانه
مساله مکانیابی p- هاب مرکز
مساله مکانیابی هاب با هزینه ثابت
مساله هاب پوششی
مساله مکانیابی یال هاب
مساله مکانیابی p- هاب میانه
مساله مکانیابی p-هاب میانه ، تعمیم مساله مکانیابی p- تسهیل بر روی شبکه است. در مسائل مکانیابی بر روی شبکه ،تابع هدف میانه در حالت کلی عبارت است از کمینه ساختن هزینه تامین تقاضای تمام نقاط توسط تسهیلات خدمت رسانی، به نحوی که این تسهیلات در مکانهای منتخب مستقر شده باشند. مساله مکانیابی p-تسهیل میانه، کارایی جغرافیایی را مد نظر قرار می دهد و هدف آن استقرار p تسهیل بر روی شبکه است به نحوی که مجموع فواصل میان نقاط تقاضا (گره های شبکه) و نزدیکترین تسهیل حداقل گردد. بر این اساس در مکانیابی p-هاب میانه تعداد pهاب از میان گره های شبکه انتخاب و گره های اسپوک به آنها تخصیص می یابند، به نحوی که هزینه کل حمل و نقل از طریق ساختار ایجاد شده حداقل گردد. در این رویکرد p یکی از پارامترهای مدل است و به صورت برون زا و قبل از حل توسط تصمیم گیرنده تعیین می شود؛ خروجی مدل های p-هاب میانه شبکه ای با p هاب و n-p گره اسپوک است که به هاب ها تخصیص یافته اند.
مساله مکانیابی p- هاب مرکز
مساله مکانیابی p-هاب مرکز معادل مکانیابی p- مرکز در مکانیابی بر روی شبکه است. مدلهای مرکز در پی بهبود بدترین وضعیت سیستم هستند و توجهی به مجموع هزینه های حمل و نقل ندارند؛ این نوع هدف عموما زمانی مورد توجه قرار می گیرد که عدالت بیش از میانگین عملکردسیستم اهمیت داشته باشد. تابع هدف مساله p- مرکز عبارت است از استقرار pتسهیل بر روی شبکه، به نحوی که بیشترین هزینه تامین تقاضای گره ها،توسط تسهیلات مستقر شده حداقل گردد. عموما از مساله p- مرکز جهت تعیین مکان تسهیلات عمومی نظیر تسهیلات اورژانسی، پلیس، آمبولانس، مرکز نجات و غیره استفاده می شود. در ادبیات موضوع از مساله p- مرکز تحت عنوان مدل "حداقل حداکثر" نیز یاد می شود، زیرا این مدل بیشترین فاصله تقاضا را از نزدیکترین تسهیلات کاهش می دهد.
در مدل های مرکز، تقاضای هر نقطه توسط نزدیکترین تسهیل تامین می گردد و بنابراین همواره پوشش کامل حاصل می شود. بر این اساس هدف مساله مکانیابی p-هاب مرکز عبارتست از انتخاب تعداد p هاب از میان گره های شبکه و تخصیص n-p گره اسپوک به آنها، به نحوی که بیشترین فاصله میان جفت های مبدا- مقصد از طریق ساختار ایجاد شده حداقل گردد. این رویکرد معمولا برای انتقال کالاهای فاسد شدنی مورد استفاده قرار می گیرد.
مساله مکانیابی هاب با هزینه ثابت
مساله مکانیابی هاب با هزینه ثابت، هم ارز مساله مکانیابی کارخانه بر روی شبکه است. هدف مساله مکانیابی کارخانه حداقل نمودن مجموع فواصل وزنی میان گره های تقاضا و تسهیلات و هزینه نصب تسهیلات است. مساله مکانیابی کارخانه شباهت زیادی با مساله p- میانه دارد، با این تفاوت که در این مساله تعداد تسهیلاتی که باید مستقر شوند، از پیش مشخص نیست و توسط مدل تعیین می گردد.هدف مساله مکانیابی هاب با هزینه ثابت مشابه مساله مکانیابی p-هاب میانه است، با این تفاوت که تعداد هاب ها ، p ، به صورت درون زا تعیین می شود، بدین معنی که هزینه ثابتی برای تاسیس هاب در نظر گرفته می شود و هدف به صورت کمینه سازی مجموع هزینه کل حمل و نقل و هزینه تاسیس هاب ها تغییر می کند. در این حالت تعداد هاب ها متغیری است که پس از حل، مقدار آن مشخص می شود.
مساله هاب پوششی
مساله هاب پوششی، معادل مساله پوششی در مکانیابی تسهیلات بر روی شبکه است. در برخی از موارد و خصوصا در مکانیابی تسهیلات اورژانسی، هیچ یک از مفاهیم p- میانه و p- مرکز پاسخگو نیستند. تصمیم گیرندگان در این مواقع به دنبال پوشش مشتریان هستند. یک گره زمانی تحت پوشش یک تسهیل خوانده می شود که زمان یا فاصله میان آن گره و نزدیکترین تسهیل، بیش از یک مقدار مشخص نباشد. به عنوان مثال فاصله هیچ مشتری ای از نزدیکترین ایستگاه آتش نشانی نباید بیش از 2 کیلومتر باشد. در ادبیات موضوع مدلهای پوشش را به دو دسته کلی تفکیک می کنند:
1- مساله مکانیابی مجموعه پوشش
2-مساله مکانیابی بیشترین پوشش
هدف مساله مکانیابی مجموعه پوشش، کمینه سازی تعداد تسهیلات مورد نیاز برای پوشش دادن تمام نقاط تقاضا است. در مسائلی که گره های تقاضا بسیار پراکنده هستند،پوشش کامل تمام گره های تقاضا ممکن است منجر به راه حلی گردد که در آن تعداد تسهیلات از نگاه بودجه چندان معقول نباشد. در این شرایط از مساله مکانیابی بیشترین پوشش استفاده می شود؛ هدف این مدل بیشینه ساختن تقاضای برآورد شده، با استفاده از تعداد محدودی تسهیل است، به عبارت دیگر در این گونه مسایل حداکثر تعداد تجهیزات در دسترس از پیش تعیین شده است. در رویکرد p-مرکز، تقاضای هر نقطه توسط نزدیکترین تسهیل تامین می گردد و بنابر این همواره پوشش کامل حاصل می گردد.از این رو بر خلاف رویکرد مجموعه پوشش که در آن پوشش کامل ممکن است منجر به استفاده از تجهیزات اضافی گردد، پوشش کامل در رویکرد p- مرکز توسط تعداد مشخصی تسهیل حاصل می گردد.
رویکرد پوشش در حوزه شبکه های هاب و اسپوک تحت عنوان مکانیابی هاب پوششی خوانده می شود. هدف این مساله طراحی شبکه هاب و اسپوک به نحوی است که فاصله هر دو نقطه از طریق ساختار حاصل از حد مشخص شعاع پوشش بیشتر نشود. در این مساله الزامی به وجود جواب به ازای یک شعاع پوشش مشخص وجود ندارد. این رویکرد بر بدترین حالت سرویس متمرکز است و توجهی به مجموع هزینه های حمل و نقل جریان ندارد. مشابه مفهوم پوشش درمکانیابی تسهیلات ، مساله مکانیابی هاب پوششی به دونوع کلی تفکیک می شود:
مساله مکانیابی هاب مجموعه پوشش که طبق آن مکان هاب ها برای پوشش تمام نقاط تقاضا باید به نحوی تعیین گردد که مجموع هزینه های ایجاد هاب حداقل گردد.
مساله مکانیابی هاب با بیشترین پوشش که نیازمند پوشش کامل نقاط تقاضا نیست، هدف آن مکانیابی تعداد مشخصی هاب ، به نحوی است که بیشترین پوشش را برای نقاط تقاضا حاصل کنند.
مساله مکانیابی یال هاب
هدف این مساله مکانیابی تعداد مشخص q یال هاب به نحوی است که مجموع هزینه حمل و نقل شبکه حداقل گردد. در این مساله شبکه سطح هاب الزاما ارتباط کامل نیست، بعلاوه ضریب تخفیف در هر یک از یالهای هاب الزاما یکسان نیست. مکان گره های هاب بر اساس مکان یالهای هاب تعیین می گردد.
الگوی تخصیص
مسایل مکانیابی هاب در رده مسایل مکانیابی – تخصیص قرار دارند. بخش تخصیص مساله ، آرایش شبکه اسپوک را تعیین می کند. مسایل مکانیابی هاب را براساس آرایش شبکه اسپوک به دو دسته کلی تقسیم می کنند:
تخصیص منفرد
تخصیص چند گانه
تخصیص منفرد
طبق این الگو گره های اسپوک دقیقا به یک هاب اتصال می یابند و تمام جریان ورودی و خروجی آنها از طریق این هاب انتقال می یابد.در بسیاری از سیستم های پستی الگوی تخصیص منفرد است.
تخصیص چندگانه
در این الگو محدودیتی بر حداکثر تعداد هاب هایی که هر گره اسپوک می تواند به آنها اتصال یابد، وجود ندارد و هر گره می تواند در انتقال جریان به سایر گره ها، از هابی استفاده نماید که کوتاه ترین مسیر را فراهم می کند. در شبکه های هوایی ، بسیاری از مبادی به بیش از یک هاب متصل شده اند.
ظرفیت
عامل دیگر برای تفکیک مسائل حوزه هاب و اسپوک اعمال محدودیت بر جریان است. این محدودیت ممکن است بر جریان قابل پردازش توسط هاب ها و یا میزان جریان قابل عبور از ارتباط ها اعمال شود. مسائل مکانیابی هاب بر اساس ظرفیت به دو دسته کلی تقسیم بندی می شوند:
مسائل با محدودیت ظرفیت
مسائل بدون محدودیت ظرفیت
مسائل با محدودیت ظرفیت
در بسیاری مسائل ، فرض واقعی کمبود منابع و محدودیت ظرفیت در مدل اعمال شده است. این محدودیت می تواند بر حداکثر یا حداقل جریان عبوری از ارتباط ها، میزان جریان عبوری از هاب ها و یا میزان جریان قابل جمع آوری یا قابل توزیع توسط هاب ها اعمال شود و حجم جریان عبوری را به یک سقف یا کف، که همان ظرفیت یا آستانه جریان ارتباط ها یا هاب هاست ،محدود نماید. همچنین ممکن است ظرفیت ارتباط ها یا هاب های مختلف با یکدیگر تفاوت داشته باشند.
مسائل بدون محدودیت ظرفیت
در این رویکرد هیچ گونه محدودیتی بر میزان جریان عبوری از ارتباط ها ، میزان جریان قابل پردازش توسط هاب ها و یا تعداد گره های اسپوک که میتوانند به هر هاب اتصال یابند، اعمال نمی شود.
مکانیابی مجدد یا جابه جایی تسهیلات تعریف مکانیابی مجددمسائل مکانیابی تسهیلات به طور زیادی در بخش های مختلف توسط محققان مورد مطالعه قرار گرفته اند. به طور مثال تسهیلات عمومی مانند مدرسه ها و کتابخانه های عمومی باید طوری مکانیابی شوند که به مشتریها یا جوامع خدمت بهتری دهند. در بیشتر اوقات جامعه می تواند به عنوان گروهی از مردم در نظر گرفته شود به طوریکه تقاضای اولیه برای هر تسهیل مشخص است. تسهیلات باید بتوانند مشتریان را برای مدت زمان طولانی سرویس دهند به طوریکه تغییرات در تقاضای مشتریان را تا حدی پیش بینی کرده باشند. زیرا ممکن است در طول زمان به دلیل تغییر شرایط ، تقاضای بعضی از مشتریان بالا رفته و بعضی دیگر کاهش یابد بنابراین تسهیلات موجود ممکن است نتوانند به طور پیوسته سرویس مناسب و کافی را فراهم کنند. علاوه بر آن ، با توجه به مقدار سفارش فاصله مشتری و تامین کننده نیز باید مورد اهمیت و توجه قرار گیرد.در چنین شرایطی ، بستن تعدادی از تسهیلات موجود و افتتاح تسهیلات جدید ضروری است.برای چنین مسائلی نیاز داریم به مکانیابی اولیه برای تسهیلات و همچنین طرحی برای آینده جهت مکانیابی مجدد تسهیلات به منظور مینیمم کردن کل فاصله سفرهای مشتریان به نزدیکترین تسهیلات [6] .
ضرورت مکانیابی مجدد
فرض کنید که بودجه در دسترس یا سیاست های کمپانی مورد نظر، تعداد تسهیلات اولیه برای افتتاح و همچنین مکانهای کاندید برای استقرار تسهیلات را در ابتدای امر محدود کند. در حالیکه اضافه شدن بودجه در آینده و یا تغییر سیاست ممکن است به کمپانی اجازه ایجاد تعدادی تسهیلات متفاوت و یا انتقال و تغییرمکان تسهیلات اولیه را دهد. همچنین تعداد تسهیلات در آینده ممکن است وابسته به موفقیت تسهیلات در شرایط اولیه باشد [29]. بنابر این مکانیابی های اولیه تسهیلات با در نظر گرفتن احتمال تغییر در تعداد تسهیلات و مکان آنها در آینده باید مشخص شوند.
هدف مکانیابی مجدد
در مسائل مکانیابی مجدد هدف مینیمم کردن مجموع فاصله های جاریست و همچنین مینیمم کردن سفرهای بین فواصل مورد انتظار آینده توسط مشتریان به نزدیکترین تسهیلات بدون تجاوز از بودجه معین برای افتتاح یا بستن تسهیلات می باشد.
فرضیات مساله
با در نظر گرفتن زنجیره تامین با هدف کاهش هزینه که شامل کاهش زمان در ارسال محصولات مورد تقاضا به مشتری ، کاهش هزینه حمل و نقل که وابسته به کاهش طول مسیر حمل و نقل می باشد باید اقدام به احداث یا اجاره مکانهایی به عنوان انبار یا هاب نماییم ، همچنین هزینه تهیه انبار (مرکز توزیع یا هاب) اعم از هزینه احداث یا هزینه اجاره انبار را نیز کاهش دهیم . از سوی دیگر باید با در نظر گرفتن تغییراتی که در آینده به وجود خواهد آمد مانند تغییر در محدودیت های در نظر گرفته شده برای هر هاب و یا تغییر در مقدار تقاضاهای مورد نیاز و ... در پی مکانیابی مجدد برای انبارها نیز باشیم .
مدل ارائه شده به جهت پاسخ به دو سوال اساسی مطرح شده است(فرضیه مساله):
1- هر گره غیر هاب که شامل مشتری و تولیدکننده می شود باید به کدام گره هاب یا توزیع کننده تخصیص داده شود که از لحاظ کل هزینه و فاصله در بهینه ترین شرایط قرار گیرد؟
2- اگر تقاضای مطالبه شده هر مشتری از هر هاب تغییر یابد یا میزان کالایی که تولید کننده می تواند به توزیع کننده برساند تغییر کند و یا اگر مکان استقرار مشتری و تولید کننده تغییر یابد و فاصله آنها نسبت به هاب تخصیص داده شده به آنها دیگر بهینه نباشد، برای هر هاب یا هر گره توزیع کننده چه حالتی پیش می آید. آیا هاب مورد نظر در مکان اولیه خود بماند یا بسته شود و یا جابه جایی به مکان (گره) ثانویه در محدوده پوشش در نظر گرفته شده در مدل بهینه می باشد؟
با توجه به تغییراتی که در میزان تقاضا و مکان تقاضا ونقاط تولید محصول رخ خواهد داد میتوان در نظر گرفت که هر گره غیر هاب(spoke) باید با چندین گره هاب در ارتباط باشد که بتواند با توجه به تغییرات به وجود آمده بهینه ترین مسیر با نقاط توزیع را برگزیند (تخصیص چندگانه) . علاوه بر آن فرض کمبود منابع و محدودیت ظرفیت در مدل اعمال شده وجود خواهد داشت. این محدودیت می تواند بر حداکثر یا حداقل جریان عبوری از ارتباط ها، میزان جریان عبوری از هاب ها و یا میزان جریان قابل جمع آوری یا قابل توزیع توسط هاب ها اعمال شود و حجم جریان عبوری را به یک سقف یا کف که همان ظرفیت یا آستانه جریان ارتباط ها یا هاب هاست محدود نماید. همچنین ممکن است ظرفیت ارتباط یا هاب ها با یکدیگر تفاوت داشته باشند (مسائل با محدودیت ظرفیت ).
هدف از اجراهدف از انجام این مطالعه بررسی روشهایی به منظور مینیمم کردن مجموع هزینه ها اعم از هزینه ثابت احداث یا اجاره هاب ، هزینه حمل و نقل و جابه جایی از گره i به گره j با استفاده از هاب های kوm ، و هزینه تغییر حالت هاب ها اعم از بسته شدن یا جابه جا شدن به مکان جدید برای هر هاب (مکانیابی مجدد هاب ها) می باشد؛ در واقع به دنبال حداقل کردن کل هزینه تامین تقاضای مشتری می باشیم، به بیانی دیگر هدف در این پایان نامه این است که هر گره غیر هاب که شامل مشتری و تولیدکننده می شود باید به کدام گره هاب یا توزیع کننده تخصیص داده شود که از لحاظ کل هزینه و فاصله در بهترین شرایط قرار گیرد و از سوی دیگر اگر تقاضای مطالبه شده هر مشتری از هر هاب تغییر یابد یا میزان کالایی که تولید کننده می تواند به توزیع کننده برساند تغییر کند و یا اگر مکان استقرار مشتری و تولید کننده تغییر یابد و فاصله آنها نسبت به هاب تخصیص داده شده به آنها دیگر بهینه نباشد، برای هر هاب یا هر گره توزیع کننده چه حالتی پیش می آید. آیا هاب مورد نظر در مکان اولیه خود بماند یا بسته شود و یا جابه جایی به مکان (گره) ثانویه در محدوده پوشش در نظر گرفته شده در مدل، بهینه می باشد.
توجیه ضرورت انجام طرح افزایش تقاضای حمل و نقل با رشد رفاه اجتماعی و توسعه اقتصادی ، اجتناب ناپذیر است. همچنین ارائه خدمات حمل و نقل به قیمت ارزان، منافع متعددی در توسعه روز افزون کشورها خواهد داشت . بنابراین بهینه سازی مصرف انرژی در بخش حمل و نقل برای استمرار خدمات ارزان قیمت حمل ونقل و کاهش مصرف سوخت لازم می باشد. یک راهکار اساسی برای بهینه سازی مصرف انرژی در ترابری کالا و مسافر، طراحی صحیح شبکه های حمل و نقل و ترابری است.
مساله مکانیابی - تخصیص هاب ها (واسطه های توزیع) با هدف طراحی انواع شبکه های توزیع (جابه جایی مسافر،حمل و نقل کالا،جمع آوری و توزیع مرسولات پستی، مخابره اطلاعات،...) به عنوان یکی از مسائل مهم در زمینه ی شبکه های ترابری مطرح می باشد. طراحی صحیح شبکه های هاب با توجه به کاربرد وسیعی که در عملکرد سیستم های ترابری محصول و شبکه های ارتباطی دارند، از اهمیت ویژه ای برخوردار است و طراحی صحیح آن بی شک در بهینه سازی مصرف انرژی در شبکه های حمل ونقل موثر خواهد بود.
از طرفی با توجه به چالش هایی که در آینده به وجود خواهد آمد نظیرتغییر سیاست های دولت، تغییر میزان تقاضای مشتری ، تغییر مکان مشتری و.... ممکن است مجبور به تغییر مکان هاب ها شده یا ناگزیر شویم تعدادی از هاب ها را ببندیم. بر این اساس علاوه بر تعیین مکان بهینه برای هاب ها در شرایط اولیه ، باید به دنبال روشی برای تخصیص بهینه گره های غیر هاب به گره های هاب و تغییر مکان هاب ها با توجه به محدودیت های موجود در مراکز تسهیلات (توزیع) بود.
کلمات کلیدی فارسی مکانیابی هاب ، بررسی بهینه بودن مکان استقرار هاب ، زنجیره تامین
کلمات کلیدی انگلیسی :
Relocation، Hub - and -Spoke Networks ،Hub- Location، Supply Chain

فصل دوم
ادبیات و پیشینه تحقیق

ادبیات موضوع زنجیره تامیندر دهه 80 میلادی تلاش های زیادی برای بهبود عملکرد سازمانها از راه تمرکز بر فرآیندهای درونی انجام شد. بررسی نتایج عملکرد سازمانها مشخص ساخت که بخش عمده ای از آن تحت تاثیر تامین کنندگان و مشتریان است. گسترش حوزه بهبود عملکرد سازمان ها به ماورای مرزهای سازمانی نیازمند ابزارهای جدیدی بود. یکی از مفاهیمی که در این راستا طرح شد و اهمیت زیادی پیدا کرد، زنجیره تامین است. که در آن شرکت ها با همکاری یکدیگر و ایجاد هم افزایی توانایی اتخاذ تصمیمات کاراتر را کسب می کنند. زنجیره تامین اصطلاحی است که امروزه به وفور در تمامی جهان مورد استفاده قرار می گیرد. اینک به بررسی مطالعاتی می پردازیم که در حوزه زنجیره تامین و بخش تولید و توزیع که مربوط به ارضای نیاز مشتری می باشند انجام شده اند.
ارنگ و همکاران [71] طراحی شبکه زنجیره تامین را به عنوان یک مسئله تصمیم گیری استراتژیکی برای مدل های تولید-توزیع مطرح کرده اند در این تصمیم گیری تعداد مکان های تامین کنندگان مواد خام، تولیدات، موجودی میان فرآیند و تسهیلات توزیع برای یک بازه زمانی تعیین شده است. ویدال و همکاران [153] مدل های استراتژیک تولید-توزیع را بررسی کرده اند، و تمرکز اصلی آنها بر روی مدل های برنامه ریزی عدد صحیح مختلط بوده است.
در ادامه این مقالات می توان به کار مارتین [110] اشاره کرد که گزارشی موفقیت آمیز از کاربرد برنامه ریزی ریاضی جهت ترکیب سیستم های تولید- توزیع شامل 4 کارخانه، 40 مرکز تقاضا و 200 محصول می باشد. داسکی و کاتر[56] مدلی برای سیستم تامین-توزیع براساس کاربرد توابع پیوسته جهت ارائه هزینه توزیع و تقاضای مشتری طراحی کرده اند. بوک بیندر و همکاران[32] ترکیب برنامه ریزی موجودی و حمل و نقل (تولید-توزیع) را در مسئله توزیع کاغذ با موجودی احتیاطی مورد بررسی قرار داده اند.
لیندا و همکاران [105]یک مطالعه موردی در زمینه تبادل هزینه های جا به جایی، هزینه موجودی و هزینه حمل و نقل (تولید-توزیع) انجام داده اند. در مدل آن ها نیازهای موجودی احتیاطی تخمین زده شده و براساس اطلاعات واقعی گذشته مورد بررسی قرار گرفته است، تصمیم گیری در زمینه موجودی احتیاطی مستقل از تصمیمات جایابی-تخصیص نیست و موجودی احتیاطی با توجه به تقاضای تخصیص داده شده به هر مرکز توزیع محاسبه شده است .
یانگ و همکاران [168] با در نظر گرفتن لایه های مختلف برای تولید-توزیع، یک مدل ترکیبی ایجاد کرده اند، آن ها مجموعه ای از تولیدکنندگان، توزیع کنندگان و مشتریان را تحت بررسی قرار داده اند و با فرض تکمیل یک محصول در چند مرحله تولید در هر کارخانه و سپس توزیع آن ها در یک شبکه توزیع تا رسیدن به دست مشتری مدل خود را توسعه دادند و همچنین یادآوری کرده اند که امکان ساخت یک مدل یکپارچه برای تامین-توزیع وجود دارد.
اسکوت و همکاران [136] بر روی ترکیب توابع حمل و نقل و انبارداری (تولید-توزیع) در زنجیره تامین براساس مدل شبیه سازی کار کرده اند.
مدل های چند رده ای و چند کالایی شبکه لجستیکبیشتر ادبیات موجود در زمینه طراحی شبکه های لجستیک شامل مدل های مختلف مکان یابی تسهیلات بر پایه برنامه ریزی خطی عدد صحیح آمیخته است. این مدل ها انواع مختلفی از مدل های ساده نظیر مکان یابی تسهیلات با ظرفیت نامحدود تا مدل های پیچیده تر نظیر مدل چند رده ای با ظرفیت محدود و یا مدل های چند کالایی را شامل می شوند. همچنین الگوریتم های قدرتمندی بر پایه تئوری بهینه سازی ترکیباتی برای حل این مدل ها ارائه گشته است.
در زمینه طراحی شبکه لجستیک مستقیم ادبیات فربهی وجود دارد که ما در این قسمت به برخی از مقالات مرتبط اشاره می کنیم. جایارامان و همکاران [88] به ارائه مدل برنامه ریزی خطی عدد صحیح آمیخته برای یک شبکه لجستیک چندکالایی و چهار رده ای پرداخته اند. این مدل جز معدود مدل هایی است که به تصمیم گیری درباره رده تامین کنندگان می پردازد. این مقاله روشی ابتکاری بر مبنای روش لاگرانژ برای حل مسئله ارائه داده است. ملاچرینودیز و همکاران [113]برای طراحی مجدد به ساختار شبکه انبارها به منظور کاهش هزینه ها از یک متدولوژی چندهدفه برنامه ریزی فیزیکی استفاده کرده اند در این روش برای هر یک از اهداف مقادیر حداقل و حداکثری را به عنوان هدف تعریف شده و حداقل جمع وزنی انحراف از این مقادیر محاسبه شده است.
چانگ [49] مدل جدیدی را بر مبنای تابع استقرار وظیفه ای کیفیت برای طراحی شبکه توزیع و انتخاب توزیع کنندگان توسعه داد . در این مدل ابتدا نیازمندی های مشتریان از شبکه مشخص می شود. سپس این عوامل دسته بندی و امتیاز دهی می گردند و بوسیله ابزاری با نام خانه کیفیت این نیازمندی ها ساختار شبکه و توزیع کنندگان را مشخص می سازند. این مقاله نیز تنها به مکان یابی مراکز توزیع پرداخته و جریان بین عناصر شبکه توزیع مورد ارزیابی قرار نگرفته است.
غضنفری و همکاران [9] مباحث کلان مدیریت استراتژیک تامین کنندگان خودروسازی را مورد بررسی قرار دادند و پس از معرفی مدل های مطرح در زمینه مدیریت تامین کنندگان و تحلیل و مقایسه آن ها، به معرفی شرکت های استراتژیک و رد ه بندی استراتژیک تامین کنندگان پرداختند.
آریانژاد و همکاران [2] مدل یکپارچه تصمیم گیری جهت انتخاب و توسعه تامین کنندگان به صورت توامان، ارائه نمودند و از آنجا که لازمه این امر مقایسات فراوان جهت دستیابی به اهداف متعدد بر اساس معیارهای کیفی و کمی است، لذا مد لسازی مساله به صورت یک برنامه ریزی ریاضی چند هدفه صورت گرفته است . با این وجود در این تحقیق تنها به مساله انتخاب تامین کنندگان پرداخته شده و مکان یابی و طراحی شبکه مورد بررسی قرار نگرفته است.
آریانژاد و همکاران[1] مدلی جهت انتخاب بهترین تامین کنندگان در حالت چند هدفه توسعه دادند که در آن معیارهایی همچون هزینه اقلام، کیفیت و غیره به طور همزمان در نظر گرفته شد. قابلیت انعطاف مدل ارائه شده بصورتی است که بتوان با تکیه بر نقطه نظرات تصمیم گیرنده، مدل را در جهت رسیدن به چند هدف به صورت همزمان به کار برد.
جوادیان وهمکاران [5]مدلی بر اساس تابع مطلوبیت چندشاخصه برای تعیین تامین کنندگان ارائه نمودند . در این مقاله بر مبنای معیارهای مدل مرجع عملیات زنجیره تامین و همچنین در نظر گرفتن مقادیر کمی و کیفی دیگر و نیز شرایط احتمالی مدلی بر مبنای تئوری مطلوبیت گروهی برای انتخاب تامین کنندگان ارائه شده است.
بابایی و همکاران [3] به منظور جایابی تسهیلات در سیستم لجستیک مدل تصمیم گیری چندهدفه فازی را توسعه دادند . در مدل یک شبکه دو سطحی در نظر گرفته شده است که تعداد و مکان باراندازهای موقتی به گونه ای تعیین می گردد که ضمن تخصیص سازندگان و تامین کنندگان به هر یک از این باراندازهای موقتی، از حداکثر ظرفیت وسایل نقلیه در ارسال قطعات استفاده شود.
مکانیابیمدلهای مکانیابی تخصیص به جستجوی سیستماتیک دسترسی بهینه جمعیت به تسهیلات پرداخته و علاوه بر مکان یابی خدمات، شامل چگونگی تخصیص این خدمات به افراد نیز می شود. این مدل ها چارچوبی را برای بررسی مشکلات موجود دسترسی به خدمات از طریق مقایسه برابری و کار آیی تصمیمات قبلی مکان یابی فراهم و به دنبال آن گزینه هایی جهت افزایش کارآیی سیستم موجود پیشنهاد میکنند [18] . مدلهای مکانیابی دامنه وسیعی از کاربردها شامل تعیین محل یک تجهیز در کارخانه، محل استقرار یک کارخانه در شهر، محل استقرار مراکز توزیع محصول، مکانیابی بیمارستانها، مکان یابی مراکز عرضه ی سوخت و بسیاری مواردی دیگر را شامل میگردد. مدلهای مکانیابی بر اساس شرایط مساله به دسته های مختلفی تقسیم میشوند. هونگ ژونگ جیا و همکارانش [84] هشت فاکتور را که در دسته بندی مدل های مکان یابی تسهیلات موثرهستند را معرفی کردند. این هشت فاکتور عبارتند از: مشخصات جغرافیایی، خصوصیات تسهیلات، اهداف، روش حل، الگوهای تقاضا، انواع زنجیره عرضه، افق زمانی و پارامترهای ورودی. یکی از این دسته مدلها، مدل های مکان یابی پوششی است . این مدلها اغلب در مکانیابی تجهیزات اضطراری همچون مراکز درمانی، آمبولانس، نیروهای امنیتی، آتش نشانی ها و سایر موارد مشابه مطرح می شوند و هدف نهایی آن ها تعیین مراکز ارائه خدمت در نقاط نامزد است، به گونه ای که بیشترین یا بهترین خدمت به مناطق تقاضا داده شود.
مطالعه نظری مکان یابی تسهیلات به صورت رسمی از سال 1909 شروع شد، هنگامیکه آلفرد وبر [160] تعیین موقعیت یک انبار را به صورت حداقل ساختن کل فاصله بین انبار و مشتریان مختلف مطرح کرد . از آن پس، تئوری مکان یابی تسهیلات و کاربردهای آن توسط پژوهشگران در زمینه های مختلف مورد استفاده قرار گرفت و مدل های گوناگونی در این زمینه ارائه شد .
مدلهای زیادی در عرصه مسائل مکانیابی – تخصیص تاکنون مطرح شده اند. مدلهای مکانیابی – تخصیص می تواند به دو مدل گسسته و پیوسته تقسیم شوند.
کرنت وهمکاران [54] در میان طبقات مختلف مدلهای مکانیابی – تخصیص به معرفی مدلهای گسسته پرداختند . آنها 8 مدل پایه ای مکانیابی تسهیلات را که شامل مدلهای مجموعه پوشش ، ماکزیمم پوشش ، p – مرکز ، p-پراکندگی ، p- میانه ، هزینه ثابت استقرار ، هاب و ماکزیمم- مجموع می شوند را شرح داده اند. هدف هر یک از این مدلها بهینه سازی یک تابع هدف خاص به همراه مکانیابی تسهیلات جدید در شبکه است. تمامی این مدلها می توانند به صورت توابع چند هدفه یا با فرضیه پویا یا دینامیک و به صورت احتمالی مطرح شوند.
تورگاس و همکاران [150] مساله مکانیابی مجموعه پوشش را که نوعی از مساله پوشش است مورد بررسی قرار دادند. هدف این مدل، مکانیابی کمترین تعداد خدمت دهنده ها برای پوشش همه نقاط تقاضا با حد اقل یک مرکز سرویس دهنده در زمان یا فاصله استاندارد می باشد. مشکل اساسی این مدلها ، فرضیه غیر واقعی نامحدود بودن بودجه است که این فرضیه منجر به پوشش همه گره ها می شود. این مشکل باعث شد تا چارچ و ریول [50] به تعریف مساله مکانیابی ماکزیمم پوشش بپردازند. این مدل ماکزیمم مقدار تقاضا را که یک سرویس دهنده در زمان یا فاصله استاندارد میتواند تامین کند را جستجو می کند با توجه به اینکه در تعداد خدمت دهندگان نیز محدودیت وجود دارد، از این رو ،همه گره ها پوشش داده نمی شوند.
عادل عالی و جان وایت مسأله تعیین مکان های بهینه برای احداث مرکز خدمات اورژانسی (مراکز پلیس، ایستگا ههای آتش نشانی، ایستگاه های آمبولانس، مراکز سلامت، بیمارستا نها، و ماشین های پلیس)را در آمریکا مورد بررسی قرار دادند عادل و جان [16]. گالوآ و همکاران مدل پوشش حداکثر را با استفاده از روش آزاد سازی لاگرانژ و تبدیل آن به یک مساله ی کوله پشتی صفر و یک حل کردند[79] .

پاسخ دهید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *