پایان نامه ها

موجک، ویژگی‌های، فیلتر، ویژگی‌ها، سيگنال، استخراج

a Database و QT Database ارزيابي شده اند. در الگوريتم پيشنهادي با بكارگير‌ي موجك اسپلاين درجه دوم (quadratic spline)، كمپلكس QRS و همچنين موجهاي T و P از انواع نويزها و تداخل‌هاي ناخواسته تفكيك شده و تشخيص آريتمي‌هاي حاد در بانك اطلاعاتي سيگنال‌هاي الكتروكارديوگرام استاندارد حتي در حضور نويز و تداخل‌هاي ناخواسته نيز امكان پذير مي‌گردد. با استفاده از الگوريتم پيشنهادي تشخيص آريتمي‌هاي تاكيكاردي بطني VT، تاكيكاردي فوق بطني SVT، فيبريلاسيون بطني VFIB، فلاتر بطني VFL، فلاتر دهليزي AFL، و آريتمي فيبريلاسيون دهليزي AFIB، انجام شده است]12[.
2-8- طبقه‌بندی سیگنال الکترو‌کاردیو‌گرام با طبقه‌بند ماشین بردار پشتیبان و الگوریتم PSOدر این پژوهش از ویژگی‌های زمانی و مورفولوژیک استفاده شده است. آزمایش از روش‌های طبقه بند RBF و kNN و SVM به عمل آمده که نتایج برتری طبقه‌بند SVM با هسته گوسی را نشان می‌دهد. همچنین برای تنظیم پارامترهای SVM از الگوریتم بهینه‌ساز PSO استفاده شده است که باعث بهبود عملکرد طبقه‌بندی SVM می شود. در این مقاله از 250 و500و750 ضربان اموزش استفاده شده که با توجه به نتایج آزمایش عملکرد طبقه‌بند با 750 داده اموزش دقت 93.27% است]3[.
2-9- طبقه‌بندی آریتمی‌های قلبی با استفاده از PSOدر این پژوهش یک سیستم جدید برای طبقه‌بندی سه نوع ضربان قلب شامل ضربان نرمال و دو آریتمی قلبی ارائه شده است. این سیستم شامل سه ماژول اصلی – یک ماژول استخراج ویژگی، یک ماژول طبقه بندی و یک ماژول بهینه‌سازی‌ است. در ماژول استخراج ویژگی ترکیبی مناسب از ویژگی‌های شکلی و زمانی ایجاد می‌شود. در ماژول طبقه بندی یک کلاس بند چند طبقه بر پایه ماشین بردار پشتیبان ارائه شده است. در ماژول بهینه‌سازی از الگوریتم اجتماع ذرات برای یافتن بهترین ویژگی‌ها استفاده شده است. نتایج شبیه سازی دقت مناسبی داشت و این در حالی است که در بدست آمدن این سطح دقت،فقط مقدار کمی از ویژگی‌ها استفاده شده است]14[.
2-10- رویکرد ترکیبی در طبقه‌بندی سرطانمدلی مبتنی بر فیلتر و رپر را جهت دسته‌بندی نشان گر سرطان برای انتخاب ژن در داده‌های ریز آرایه ارائه شده است. نتایج مدل ترکیبی ان‌ها که از نرخ فیشر به عنوان فیلتر استفاده می‌کند،روی چندین مجموعه داده واقعی دقت کلاس‌بندی بسیار بهتری نسبت به مدل تنها رپر، نشان می‌دهد. مدل ترکیبی دو مرحله‌ای ارائه شده در این پژوهش ویژگی‌های مناسب را بر اساس معیار اماری حداکثر وابستگی و حداقل افزونگی انتخاب می‌کند. در مرحله اول مدل از معیار حداکثر ارتباط و حداقل افزونگی برای انتخاب زیر مجموعه بهینه ویژگی‌ها بهره می‌برد. در مرحله دوم از الگوریتم‌های کلاسیک رو به جلو وعقب گرد برای جستجو در زیر مجموعه‌های مرحله اول استفاده می‌کند. نتایج تجربی مدل آنها حاکی از عملکرد بهتر این روش نسبت به روش فیلتر حداکثر وابستگی می‌باشد]15[.
2-11- دسته‌بندی آریتمی‌های قلبی بر مینای تبدیل موجک و SVMدر این پژوهش یک روش برای دسته‌بندی آریتمی‌های قلبی ارائه شده است که تعداد 5 آریتمی از بانک اطلاعاتی Physionet انتخاب شده و آریتمی‌ها به زمان های 6 ثانیه تقسیم شده و برای هر قطعه زمانی ضرایب تبدیل موجک به عنوان بردار ویژگی آن قطعه محاسبه شده و از ماشین بردار پشتیبان SVM برای دسته‌بندی آریتمی‌ها استفاده شده است. دسته‌بندی‌کننده‌های SVM را با بردارهای ویژگی قطعات آموزش داده و برای دسته‌بندی یک آریتمی مجهول، بردارهای ویژگی زمانی آن به SVM ها اعمال می‌شود]16[.
2-12- طبقه‌بندی سیگنال ECG با استفاده از خواص مورفولوژیدر این پژوهش یک روش جهت کلاس‌بندی ضربان از یک مجموعه داده بزرگ با آموزش شبکه عصبی و استفاده از موجک و ویژگی‌های زمان‌بندی ارائه داده اند. آنها دریافتند که مقیاس چهارم از تبدیل ویولت دوتایی با ویولت مرتبه دوم همراه با نرخ فاصله قبل و بعد از R-R در تمایز نرمال و PVC دیگر ضربان‌ها بسیار مؤثر است]17[.
2-13- انتخاب ویژگی با استفاده از الگوریتم فاخته باینریدر این پژوهش،انتخاب ویژگی جدید به نام جستجو فاخته دودویی، که در رفتار پرندگان فاخته است پیشنهاد شده است. آزمایش‌های انجام شده در زمینه تشخیص سرعت در سیستم‌های توزیع قدرت در دو مجموعه داده به دست آمده از یک شرکت برق برزیل انجام شدو توانایی این روش در برابر با چندین تکنیک بهینه‌سازی دیگر را نشان می‌دهد]18[.
2-14- انتخاب ویژگی با استفاده از الگوریتم فاختهمعمولا برای پیدا کردن مجموعه داده‌ها با مقدار زیادی از ویژگی‌ها روبرو هستیم که برخی از این ویژگی های مناسب نیستند. در این زمینه، یکی از استراتژی‌های مورد استفاده برای مقابله با این مشکل،انجام یک فرآیند انتخاب ویژگی به منظور ساخت یک زیر مجموعه از ویژگی‌های است که می تواند بهترین مجموعه داده را نشان دهد. مطالعات متعددی با استفاده از تکنیک‌های بهینه‌سازی الهام گرفته از طبیعت وجود دارد. در این پژوهش، ما از الگوریتم جستجو فاخته (CS) در زمینه انتخاب ویژگی استفاده می‌کنیم. برای این منظور، یک نسخه باینری از جستجو فاخته، یعنی BCS، بکار گرفته می‌شود. شبیه‌سازی و مقایسه BCS با نسخه‌های باینری از بت الگوریتم، الگوریتم کرم شب‌تاب و ذرات بهینه‌سازی انجام شده است که BCS نتایج منطقی و مناسب‌تری را نشان می‌دهد]19[.

فصل سوممعرفی الگوریتم‌ها و روش‌های پردازش سیگنال ECG
3-1- مقدمهدر این فصل به بررسی تئوری روش پیشنهادی، جزئیات و تشریح فرمول‌های مربوطه خواهیم پرداخت که شامل تکنیک‌ها و فیلترهای موجود در بخش پیش پردازش، روش‌های استخراج ویژگی از سیگنال پیش پردازش شده، روش انتخاب ویژگی‌ها و طبقه‌بند می‌باشد.
3-2- آنالیز موجکموجک یک شکل موج با طول موثر محدود و متوسط صفر است. شکل 3-1 موجک را با موج سینوسی که مبنای آنالیز فوریه است مقایسه می‌کند. موج سینوسی طول محدود ندارد و همواره قابل پیش بینی است، اما موجک‌ها تمایل دارند که نامنظم و نامتقارن باشند.
center0
00

شکل 3-1: سیگنال سینوسی و موجک
آنالیز فوریه تجزیه یک سیگنال به موجهای سینوسی از فرکانسهای مختلف است. به شکل مشابه، آنالیز موجک تجزیه یک سیگنال به نسخه‌های شیفت یافته و مقیاس شده از موجک اصلی یا مادر می‌باشد. با توجه به شکل‌های موجک و موج سینوسی، می توان دید که سیگنال‌های با تغییرات شدید بهتر می تواند با موجک نامنظم آنالیز شوند. همچنین مشخصه‌های محلی نیز توسط موجک بهتر توصیف می شوند، چون موجک‌ها محدوده محلی دارند. تبدیل موجک پیوسته (CWT) و تبدیل موجک گسسته (DWT) دو تبدیل مهم در آنالیز موجک می باشد]20[.
3-2-1- تبدیل موج پیوسته (CWT)تبدیل پیوسته موجک روی تابع پیوسته و انتگرال پذیر f(x) نسبت به موجک حقیقی Ψ(x) از رابطه زیر حاصل می‌شود:
527301126035(3-1)
020000(3-1)
WΨs, τ=-+fx Ψs,τx dx , Ψs,τ(x)=1sΨ(x-τs)
τ , s به ترتیب بیانگر مقیاس و زمان هستند]20[.
3-2-2- تبدیل موجک گسستهضرایب موجک در هر مقیاس ممکن، مقادیر بسیار زیادی عدد تولید می‌کند. راه حل کاهش تعداد آنها را می توان از تبدیل گسسته موجک (DWT) بدست آورد.
یک راه مناسب، استفاده از فیلترها در سال 1988 توسط مالات ارایه شد و توسعه یافت]21[.
3-3-2-2- تجزیه چند سطحیفرایند تجزیه می‌تواند با تقریب‌های متوالی که به نوبت تجزیه می‌شوند، تکرار شود.این عمل منجر به ایجاد درخت تجزیه موجک می‌باشد.شکل 3-2 یک درخت تجزیه موجک سه سطحی را نمایش می‌دهد]21[.

شکل 3-2: نمایی از تحلیل موجک چند وضوحی با ساختار سلسله مراتبی توسط ضرایب تقریبی و جزیی تا سطح تجزیه 3 که در آن، A مبین ضرایب تقریب و D نیز ضرایب جزئی را نشان میدهد.
شکل (3-3) ساختار فیلتری را نشان میدهد که به آن بانک فیلتری میگویند. در این ساختار بعد از اعمال هر فیلتر با کاهش نمونههای زمانی، رزولوشن فرکانسی را افزایش میدهند. بدین ترتیب که بعد از اعمال فیلتر پایينگذر در هر مرحله، با كاهش رزولوشن زمانی به ميزان نصف مرحله قبل، رزولوشن فركانسی را دو برابر میشود.

شکل 3-3: شمایی از ساختار فیلتر بانک را برای تولید ضرایب جزیی و تقریب تبدیل موجک توسط فیلترهای پایینگذر (g) و بالاگذر (h) تا سطح تجزیه سوم نشان میدهد.
3-2-4- انتخاب موجک مادرضرایب تبدیل موجک تحت تاثیر فیلترهای اعمال شده به سیگنال هستند، که این فیلترها توسط موجک مادر و تابع مقیاس بدست میآیند. از اینرو، ضرایب تبدیل موجک با توجه به تابع موجک مادر میتواند دارای شدت و اندازههای مختلف باشد. هریک از موجکهای مادر دارای خواصی هستند که آنها را از یکدیگر جدا میسازد. یکی از پرکاربردترین توابع موجک، تابع موجک مادر دابیچیز است .که برخی توابع مادر مانند سیملت و کافلت از روی آن ساخته میشود و دارای ویژگیهای متفاوت نسبت به دابیچیز هستند. از آنجاییکه توابع موجک مادر از لحاظ نوع و مرتبه متفاوت میباشند، لذا ضرایب موجک آنها از لحاظ زمانی و اندازه دامنه متفاوت است. این نکته قابل ذکر است که ضرایب خروجی فيلتر پائين گذر(g(n)) شكل اوليه سيگنال را دنبال میكنند، یعنی کلیات سیگنال معادل فرکانسهای پایین را دربردارند و ضرایب تقریب نام گرفتند. همچنين ضرايب خروجی فيلتر بالاگذر(h(n))، جزئيات سيگنال را دربردارند، به همين دليل به اين ضرايب، جزیيات گفته میشود و نماینده فرکانسهای بالا میباشند[37].
انتخاب موجک مادر نقش مهمی در استخراج ویژگی سیگنال ها به خصوص سیگنال ECG دارد. از این رو ما از بین موجک‌های مختلف، موجکی را انتخاب می‌نماییم که بیشترین شباهت به سیگنال ECG داشته باشد.در شکل 3-6 انواع دابیچیزها نشان داده شده است در بین موجک‌های مادر، موجک دابیچیز 6 بیشترین شباهت به سیگنال ECG را دارد که در شکل 3-7 سیگنال ECG با 8 سطح تجزیه و 8 سیگنال جزییات نشان داده شده است[36].
-40420531215

020000

شکل 3-6: انواع دابیچیز

شکل 3-7: سیگنال ECG به همراه 8 سطح تجزیه با db6 ]36[
3-2-4- ویژگی‌های استخراج شده از ویولتاستفاده از پارامترهای جدول3-1 به جای استفاده از ضرایب ویولت توصیه شده است]35] [23[.
ویژگی های موجک استخراج شده
انرژی
درصد انرژی طول سیگنال
واریانس ضرایب ویولت
انحراف معیار ضرایب ویولت
مقدار حداکثرتوزیع داده ها
انحراف داده ها
انحراف استاندارد
میانگین داده ها
جدول 3-1 ويژگي ویولت براي تشخيص مولفه هاي شناختي از ECG
3-3- ویژگی زمانیتشخيص پزشك به طور عمده مبتني بر اطلاعات زماني‌ و ریخت‌شناسی استخراج شده از سيگنال الكتروكارديوگرافي است. اين در حالي است كه در برخي از شرايط ويژگي‌هاي به دست آمده از تحليل موجك بر روي سيگنال‌هاي قلبي، به تنهايي از تمايز كافي براي طبقه‌بندي برخوردار نيستند. از اين رو، استفاده از ديگر مشخصه‌هاي موجود در سيگنال‌هاي قلبي به جهت طبقه‌بندي بيمار‌یهاي قلبي ضروري به نظر مي‌رسد.
براي توصيف كاملتر سيگنال الكتروكارديوگرافي، علاوه بر ويژگي‌هاي موجك از ويژگي‌هاي زماني نيز در اين تحقيق استفاده شده است. ويژگي‌هاي زماني مورد استفاده شامل نه ويژگي زماني براي تشخيص مولفه‌هاي شناختي از سيگنال ECG هستند كه نماد اختصاری آ نها در جدول 3-2 بيان شده است]4[.

جدول 3-2 : ويژگي زماني براي تشخيص مولفه‌هاي شناختي از ECG
ویژگی نماد اختصاری
دامنه ماكزيمم سيگنال AMP
دامنه مينيمم سيگنال -AMP
ناحيه مثبت PAR
ناحيه منفي NAR
قدر مطلق ناحيه منفي NANR
مجموع ناحيه TAR
قدر مطلق مجموع ناحيه ATAR
قدر مطلق مجموع ناحيه TAAR
پيك تا پيك سيگنال PP
3-4- استخراج ویژگی با مدل خودبازگشتی(AR)55016401019175(3-2)
020000(3-2)
روش مدلسازي خود بازگشتی یکی از مدل‌هاي اتفاقی است که براي نمایش سیگنال‌هاي غیر ایستا بسیار مورد استفاده می‌باشد. در این مدل، مقادیر جاري سیگنال به صورت جمع خطی از تعداد محدودي از مقادیر قبلی بعلاوه خطای e(n) بیان می‌شود. بنابر این پردازش به صورت 3-2 مدل می‌شود:
xn=i=1pai.xn-1+e[n]
به طوری‌که می توان گفت x(n) سیگنال مورد نظر، e(n) نویز سفید با میانگین صفر و واریانس مجهول، ai ها ضرایب و p مرتبه مدل AR می‌باشد. در این معادله متغیر x(n) به مقادیر قبلی خودش وابسته است. روشهاي متعددي بطور رایج براي تخمین ضرایب AR استفاده می‌شود]2[.
3-5- استراتژی انتخاب ویژگیانتخاب ویژگی فرآیندی است که ویژگی‌های با قدرت تشخیص بالاتر و موثرتر را از مجموعه‌های داده برای انجام اعمال داده کاوی انتخاب می‌کند. مرحله مقدماتی فرایند انتخاب ویژگی عبارتند از: شناسایی مجموعه ویژگی‌ها و جستجو برای بهترین زیر مجموعه. مجموعه پارامترها اغلب شامل الگوریتم‌های یادگیری الگوریتم های انتخاب و فرآیندهای تخمین خطا می‌باشند. البته این مسئله کاملا روشن است که هیچ مجموعه ویژگی به تنهایی برای کلیه‌ی مسائل داده کاوی کارا نمی‌باشد.
الگوریتم‌های انتخاب ویژگی به طور کلی به سه دسته تقسیم می‌شوند: مدل‌های فیلتر، مدل‌های رپر و مدل‌های ترکیبی]13[. مدل‌های فیلتر از مشخصات ذاتی یا آماری ویژگی‌های مجموعه‌های داده استفاده می کنند و از هر گونه الگوریتم یادگیری مستقل اند. چنین رویه‌هایی شامل ماشین یادگیری نمی‌باشند و برای مجموعه داده‌های با ابعاد بالا موثر بوده و پیشنهاد می‌شوند. در مقابل مدل‌های رپر از ماشین‌های یادگیری استفاده کرده و زیرمجموعه ویژگی‌ها را بر اساس تخمین کارایی انتخاب می‌کنند. در مقایسه با فیلتر‌ها رپرها دارای زمان و هزینه‌های محاسباتی بالاتری بوده و برای مجموعه داده‌های با ابعاد بالا مناسب نمی‌باشد. مزیت اصلی رپرها در دقت بالای پیش‌بینی آنها است. نتایج جستجوی رپرها برای یافتن بهترین زیر مجموعه ویژگی بسیار بالاتر از فیلتر‌ها گزارش شده است. برای انتخاب ویژگی خوب،تلاش اصلی فرایند جستجو باید شناخت ویژگی‌های موثر و غیر افزونه باشد]25[. اغلب روش‌های ترکیبی فیلتر و رپر از فیلترها جهت رتبه‌بندی ویژگی‌ها و کاهش تعداد ویژگی‌های کاندید استفاده می‌کنند. به طور کلی

متن کامل پایان نامه ها در 40y.ir

پاسخی بگذارید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *