زیر، شالوده، ایزوتروپ، این، محیط، صلب

تنش‌ها ‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏و تغییرمکان‌ها‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏ در فضای‏ هنکل به دست آمده و با کمک تبدیل معکوس هنکل و سری فوریه، تنش‌ها‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏ و تغییر مکان‌ها‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏ در فضای‏ واقعی به دست می‏آیند.
در فصل دوم با تغییر دستگاه مختصات از استوانه‌ای‏ به دکارتی، توابع گرین تغییر‌مکان و تنش در دستگاه مختصات دکارتی به‌دست آمده و با انتقال دستگاه مختصات از مبداء به‏‏‏‏ یک نقطه سطحی دلخواه، توابع تغییرمکان و تنش برای‏ بارگذاری خارج از مبداء مختصات بدست می‌آیند. بدین ترتیب توابع گرین برای‏ بار دلخواه تعیین می‌شوند. با استفاده از توابع گرین تغییرمکان و تنش، این توابع برای‏ نیروی موثر بر‏‏‏‏ یک سطح مربع مستطیل تعیین می‌شوند.
در فصل سوم با نوشتن معادلات به فرمت اجزاء محدود و استفاده از المانی جدید به نام المان گرادیانی پویا، تنش تماسی قائم و افقی در هر گره مربوط به شالوده چنان تعیین می‌شوند که شرط تغییرمکان صلب و‏‏‏‏ یا دوران صلب در هر نقطه از صفحه را ارضاء نماید. دستگاه معادلات حاکم بر تنش تماسی قائم و افقی به صورت عددی حل می‌شود. با استفاده از تنش‏های‏ تماسی نیروهای‏ کل تماسی و گشتاور خمشی کل در محل تماس شالوده و نیم‏‏‏‏‏ فضای‏ لایه ای‏ به دست ‏می‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏آید. ماتریس تبدیل بردار تغییر مکان‏ها ‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏و دوران صلب به نیروهای‏ افقی، قائم و گشتاور خمشی را ماتریس سختی نیم‏‏‏‏‏ فضا برای‏ شالوده ‏می‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏نامیم. این ماتریس با برقراری ارتباط اخیرالذکر بدست ‏می‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏آید. ماتریس سختی ‏می‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏تواند جایگزین خاک زیر شالوده شده و به افزایش دقت در آنالیز سازه‏های‏ سنگین مستقر بر محیط‏های‏ ایزوتروپ جانبی لایه ای‏  کمک کند.
فصل اولمعادلات تعادلدر محیط‏های‏ ایزوتروپ جانبی لایه ای
1-1- مقدمهتحلیل استاتیکی و دینامیکی سازه‏های‏ سنگین مستقر بر زمین (شکل 1-1) نیاز به فهم چگونگی انتقال نیرو از سازه به خاک و جنبه‏های‏ مختلف آن را دارد، چه در غیر این صورت نتایج تحلیل سازه ‏می‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏تواند با دقت کم همراه باشد. در این موارد، همواره برای‏ داشتن طرح مطمئن نیاز به ساده سازی‌های‏ محافظه کارانه و در نتیجه غیراقتصادی می‌باشد. یکی از راه‌های‏ در نظر گرفتن اندرکنش خاک و سازه، المان‌بندی محیط زمین زیر ساختمان به روش اجزاء ‌محدود (شکل 1-2) می‌باشد. تحلیل سازه به همراه محیط زیرین مطابق این روش اولاً بسیار پرهزینه بوده و ثانیاً به علت عدم توانایی المان‌بندی زمین تا بی‌نهایت ممکن است از دقت مناسب برخوردار نباشد. بسیاری از مصالح در طبیعت و نیز ساخته‏های‏ مصنوعی رفتار ایزوتروپ جانبی دارند. از آنجمله می توان به رفتار اعضای‏ مستقیماً برگرفته از تنه درختان، محیط خاکی زیر ساختمانها ‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏و صفحات چند لایه نام برد .اهمیت بررسی پاسخ این مصالح از دیر باز مورد توجه بوده بطوری که میشل در سال 1900 میلادی به بررسی یک نیم فضای ایزوتروپ جانبی تحت نیروهای سطحی دلخواه پرداخته است [19] . لخنیتسکی در سال 1940 محیط ایزوتروپ جانبی را در حالت متقارن محوری و بدون پیچش در نظر گرفته و معادلات درگیر حاکم بر مسئله را با معرفی یک تابع پتانسیل به صورت مجزا و قابل حل درآورده است [17] . نواکی تابع پتانسیل لخنیتسکی را مجدداًٌ به دست آورده و ادعا کرده است که این جواب محدود به مسائل متقارن نیست [20] . هو محیط ایزوتروپ جانبی را در حالت کلی مورد توجه قرار داده و تابع پتانسیل لخنیسکی را برای‏ حالت کلی تکمیل کرده است [15]. این تابع هم اکنون در ادبیات مکانیک محیط پیوسته با رفتار ایزوتروپ جانبی به نام تابع لخنیسکی- هو- نواکی مشهور است. بررسی محیط با رفتار ایزوتروپ جانبی به وسیله دیگران همچون ونگ و ونگ [29] ، ایوبنکس و استرنبرگ [14] ، الیوت [7] و پن وچو [24] نیز در حالت استاتیکی بررسی شده است. این محیط در حالت دینامیکی توسط اسکندری قادی [8] ، رحیمیان و همکاران [25] و دیگران مورد توجه قرار گرفته است.
در واقعیت خواص محیط زیر شالوده بر حسب عمق ‏می‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏تواند تغییر کند. در نتیجه به منظور واقعی‌تر کردن تحلیل فوق‌الذکر، در این پایان نامه محیط ایزوتروپ جانبی به عنوان محیط مبنا در نظر گرفته شده و اجتماع لایه ای‏ محیط‏های‏ ایزوتروپ جانبی با خواص متفاوت تحت اثر تغییر مکان صلب صفحه مستطیلی مورد تحلیل قرار ‏می‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏گیرد. با این بررسی تنش‏های‏ تماسی بین شالوده مستطیلی و نیم‏‏‏‏‏ فضای‏ لایه ای‏ ناشی از تغییر مکان‏‏‏‏ یا دوران صلب شالوده به دست آیند. تنش تماسی در لبه‏های‏ شالوده صلب رفتاری تکین از خود نشان ‏می‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏دهد و درک این مفهوم به طراحی سازه‏های‏ سنگین و آنالیز نشیمن آن بسیار کمک ‏می‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏کند. به علاوه، با تعیین نیروهای‏ تماسی کل بین شالوده و نیم‏‏‏‏‏ فضا بردار مجموع نیروها ‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏و گشتاورهای‏ تماسی بدست ‏می‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏آیند. مجموعه تغییر مکان‏ها ‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏و دوران صلب شالوده نیز‏‏‏‏ یک بردار با همان بُعد بردار نیروها‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏ تشکیل ‏می‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏دهد. ماتریس تبدیل بردار تغییر مکان به بردار نیروها‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏ را ماتریس سختی و معکوس این ماتریس،‏‏‏‏ یعنی ماتریس تبدیل بردار نیروها ‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏به بردار تغییر مکان را ماتریس نر‏می‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏ می‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏نامند. درایه‏های‏ ماتریس سختی پارامترهای‏ متمرکز جایگزین محیط لایه ای‏ ‏می‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏باشند. این پارامترها‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏ که همان سختی فنرهای‏ معرف محیط لایه ای‏ ‏می‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏باشند (شکل 1- 3)، اثر محیط لایه ای‏ روی شالوده و در نتیجه سازه روی شالوده را مدلسازی ‏می‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏کنند. این پارامترها‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏ در متون مرتبط فنر وینکلر نیز نام دارند.

شکل 1- SEQ شکل_1- * ARABIC 1- شکل شماتیک ساختمان، شالوده و زمین زیر آنها
شکل 1- SEQ شکل_1- * ARABIC 2- شکل شماتیک مدل اجزاء محدود ساختمان، شالوده و زمین زیر آنها
شکل 1- SEQ شکل_1- * ARABIC 3- شکل شماتیک مدل اجزاء محدود ساختمان و شالوده و سختی معادل خاک1-2- بیان مساله و معادلات حاکم
یک محیط نیمه متناهی ارتجاعی شامل لایه موازی با خصوصیات مصالح مختلف که همگی دارای‏ رفتار ایزوتروپ جانبی می‌باشند در دستگاه مختصات استوانه‌ای چنان در نظر گرفته می‌شود که محور عمود بر صفحه ایزوتروپی تما‏می‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏لایه‌ها ‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏بوده و جهت مثبت محور به سمت داخل نیم فضا ‏می‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏باشد (شکل 1-4).

شکل 1- SEQ شکل_1- * ARABIC 4- نیم فضای لایه‏ای متشکل از لایه‏ها‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏ با رفتار ایزوتروپ جانبی در این‌صورت معادلات تعادل بر حسب تنش‌ها ‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏برای یک لایه عمو‏می‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏در غیاب نیروهای‏ حجمی ‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏به صورت زیر نوشته می‌شوند [17] :
(1-1)
که در آن با مؤلفه های‏ تانسور تنش ‏می‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏باشند.
رابطه کرنش- تنش در مصالح ایزوتروپ جانبی برای‏ یک لایه عمو‏می بصورت زیر است [17] :
(1-2)
که در آن داریم:
(1-3)
اگر معرف مدول یانگ در صفحه ایزوتروپی، مدول یانگ عمود بر صفحه ایزوتروپی، ضریب پواسون در صفحه ایزوتروپی (جمع شدگی در امتداد دلخواه در صفحه ایزوتروپی به علت کشش عمود بر امتداد قبلی در همین صفحه)، ضریب پواسون عمود بر صفحه ایزوتروپی (جمع شدگی عمود بر صفحه ایزوتروپی به علت کشش در این صفحه)، مدول برشی در صفحه ایزوتروپی و مدول برشی در صفحات عمود بر صفحه ایزوتروپی باشد، خواهیم داشت:
(1-4)
با استفاده از رابطه (1-2)، رابطه تنش- کرنش به صورت زیر درمی‌آید:
(1-5)
ضرایب با بر حسب به صورت زیر هستند:
(1-6)
که در آن:
(1-7)
از ترکیب روابط (1-4) و (1-6) ‏می‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏توان را برحسب ضرایب مهندسی ، ، ، ، و نوشت :
(1-8)
همچنین رابطه کرنش‏- تغییر مکان در دستگاه مختصات استوانه‌ای به شرح زیر است [18] :
(1-9)
با قرار دادن رابطه (1-9) در رابطه (1-5)، تنش‌ها‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏بر حسب تغییر مکان‌ها‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏به دست ‏می‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏آیند. با قرار دادن روابط تنش-تغییر مکان در معادلات (1-1)، معادلات تعادل بر حسب مولفه‌های‏ بردار تغییر مکان بصورت زیر به دست می‌آیند:
(1-10)
1-3- توابع پتانسیلمعادلات تعادل مطابق (1-10) یک دستگاه معادلات دیفرانسیل درگیر با مشتقات جزیی می‌باشند. به منظور مجزا سازی این معادلات از دو تابع پتانسیلوکه به توابع پتانسیل لخنیستکی- هو- نواکی شهرت دارند استفاده ‏می‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏شود. مولفه‌های‏ بردار تغییر مکان بر حسب توابع پتانسیل و در دستگاه مختصات استوانه‌ای‏ به صورت زیر نوشته می‌شوند [8] :
(1-11)
که در آن:
(1-12)
(1-13)
با قرار دادن روابط (1-11) در معادلات حرکت (1-10)، دو معادله دیفرانسیل کاملاً مستقل از هم حاکم بر توابع پتانسیلو به صورت زیر درمی‌آیند:
(1-14)
(1-15)
که در آن:
(1-16)
(1-17)
پارامترهای و ریشه های معادله زیر هستند:
(1-18)
و می‌توانند اعداد مختلط باشند اما نمی‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏توانند اعداد موهو‏می‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏خالص باشند [17] .
به منظور حل معادلات (1- 14) و (1- 15) ، ‏می‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏توان سری فوریه توابع و را نسبت به نوشت. سری فوریه مختلط این توابع به صورت زیر هستند [26] :
(1-19) (1-20)
که در آن و ضرایب ام سری فوریه توابع و هستند :
(1-21)
با قرار دادن روابط (1- 19) و (1- 20) به ترتیب در معادلات (1- 14) و (1- 15) این معادلات به صورت زیر نوشته ‏می‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏شوند:
(1-22)
(1-23)
که در آن:
(1-24)
با توجه به هندسه و شرایط مسأله در دور دست بسیار مناسب ‏می‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏باشد که از تبدیل هنکل مرتبه ام نسبت به امتداد شعاعی به شرح زیر استفاده شود [27] :
(1-25)
و تبدیل معکوس هنکل آن عبارت است از [28] :
(1-26)
که در آن تابع بسل نوع اول از مرتبه می‌باشد. با قرار دادن رابطه (1-25) در معادلات (1-22) و (1-23)، این معادلات به صورت زیر درمی‌آیند:
(1-27)
(1-28)
که در آن:
(1-29)
معادله (1-27) یک معادله دیفرانسیل معمولی مرتبه 4 با ضرایب ثابت بوده

این نوشته در پایان نامه ها ارسال شده است. افزودن پیوند یکتا به علاقه‌مندی‌ها.

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *