نمونه پایان نامه - ارشد

متن کامل پایان نامه را در سایت منبع fuka.ir می توانید ببینید

فهرست اشکالعنوان صفحه
TOC h z t "فهرست شکلها,1" شکل 1-1: فلوچارت مراحل انجام پایان‌نامه PAGEREF _Toc396497803 h 3شکل 3-1: مقیاسی از ذرات نانوسیال PAGEREF _Toc396497804 h 16شکل3-2: پارامترهای مختلف بروی مختصات کروی نانوسیال PAGEREF _Toc396497805 h 18شکل 3-3: تغییرات ضریب انتقال گرمای نسبی با درصد حجمی نانوسیال PAGEREF _Toc396497806 h 20شکل3-4: تأثیر ارزش راکتیویته و عمق میله‌های کنترل بر روی دانسیته توان محوری PAGEREF _Toc396497807 h 28شکل 3-5: ارزش راکتیویته محاسبه شده بورون محلول برای سه نوع رآکتور pwr PAGEREF _Toc396497808 h 30شکل3-6: نمایی از قلب راکتور بوشهر PAGEREF _Toc396497809 h 44شکل4-1: نمایی از محیط نرم‌افزار CDMS PAGEREF _Toc396497810 h 52شکل 4-2: نمایش نتایج خروجی توسط FREECORP PAGEREF _Toc396497811 h 53شکل4-3: نمودار سرعت سیال نسبت به دور گردش پمپ در دقیقه PAGEREF _Toc396497812 h 54شکل4-4: تغییر غلظت بوریک اسید در ورودی و خروجی رآکتور نسبت به زمان PAGEREF _Toc396497813 h 56شکل 4-5: تغییرات غلظت نانوسیالات معادل بوریک اسید در طول زمان PAGEREF _Toc396497814 h 57شکل 4-6: تغییرات توان پمپاژ با درصد حجمی نانوسیال PAGEREF _Toc396497815 h 57شکل 4-7: تغییرات افت فشار با درصد حجمی نانوسیال PAGEREF _Toc396497816 h 58شکل5-1: نمودار تغییر میزان ضریب تکثیر مؤثر با تغییر غلظت نانو سیال مس PAGEREF _Toc396497817 h 62شکل 5-2: نمودار تغییر میزان ضریب تکثیر مؤثر با تغییر غلظت نانو سیال مس PAGEREF _Toc396497818 h 63شکل 5-3: نمودار تغییر میزان ضریب تکثیر مؤثر با تغییر غلظت نانو سیال مس PAGEREF _Toc396497819 h 64شکل 5-4: نمودار تغییر میزان ضریب تکثیر مؤثر با تغییر غلظت نانو سیال آلومینیوم PAGEREF _Toc396497820 h 65عنوان صفحه
شکل 5-5: نمودار تغییر میزان ضریب تکثیر مؤثر با تغییر غلظت نانو سیال هافنیوم PAGEREF _Toc396497821 h 66شکل 5-6: نمودار تغییر میزان ضریب تکثیر مؤثر با تغییر غلظت نانو سیال کادمیوم PAGEREF _Toc396497822 h 67شکل 5-7: نمودار تغییر میزان ضریب تکثیر مؤثر با تغییر غلظت نانو سیال گادلینیوم PAGEREF _Toc396497823 h 68شکل5-8: تغییرات ضریب تکثیر با درصد اکسید هافنیوم از حالت بحرانی PAGEREF _Toc396497824 h 69شکل5-9: تغییرات ضریب تکثیر با درصد اکسید هافنیوم از حالت بحرانی PAGEREF _Toc396497825 h 70شکل5-10: تغییرات ضریب تکثیر با درصد وزنی اکسید هافنیوم از حالت بحرانی PAGEREF _Toc396497826 h 71شکل5-11: میزان از دست رفتن جرم لوله در اثر حرکت سیال حاوی نانوسیال آلومینا PAGEREF _Toc396497827 h 73شکل5-12: تأثیر غلظت‌های متفاوت آلومینا بروی اصطکاک دیواره لوله PAGEREF _Toc396497828 h 74شکل 5-13: تأثیر غلظت‌های متفاوت آلومینا بروی فرسایش دیواره لوله PAGEREF _Toc396497829 h 75شکل 5-14: میزان از دست رفتن جرم لوله در اثر حرکت سیال حاوی نانوسیال مس PAGEREF _Toc396497830 h 76شکل5-15: تأثیر غلظت‌های متفاوت نانوسیال مس بروی اصطکاک دیواره لوله PAGEREF _Toc396497831 h 77شکل 5-16: تأثیر غلظت‌های متفاوت نانو سیال مس بروی فرسایش دیواره لوله PAGEREF _Toc396497832 h 78شکل 5-17: : میزان از دست رفتن جرم لوله در اثر حرکت سیال حاوی نانوسیال تیتانیوم دی‌اکسید PAGEREF _Toc396497833 h 79شکل 5-18 : تأثیر غلظت‌های متفاوت نانوسیال تیتانیوم دی‌اکسید بروی اصطکاک دیواره لوله PAGEREF _Toc396497834 h 80شکل 5-19: تأثیر غلظت‌های متفاوت نانوسیال تیتانیوم دی‌اکسید بروی فرسایش دیواره لوله PAGEREF _Toc396497835 h 80شکل 5-20: میزان از دست رفتن جرم لوله در اثر حرکت سیال حاوی نانوسیال اکسید هافنیوم PAGEREF _Toc396497836 h 81شکل 5-21: تأثیر غلظت‌های متفاوت نانوسیال اکسید هافنیوم بر روی اصطکاک دیواره لوله PAGEREF _Toc396497837 h 82شکل 5-22: تأثیر غلظت‌های متفاوت نانو سیال اکسید هافنیوم بر روی فرسایش دیواره لوله PAGEREF _Toc396497838 h 83عنوان صفحه
شکل 5-23: میزان فاکتور اصطکاک ناشی از نانوسیالات مختلف با مقادیر آمده در جدول 5-7 PAGEREF _Toc396497839 h 84شکل 5-24: تغییرات غلظت بوریک اسید در مقایسه با اکسید هافنیوم نسبت به زمان PAGEREF _Toc396497840 h 85شکل 5-25: هزینه اولیه نانوسیال اکسید هافنیوم PAGEREF _Toc396497841 h 86شکل 5-26: هزینه کلی خوردگی برای یک متر لوله در نیروگاه هسته‌ای PAGEREF _Toc396497842 h 87شکل 5-27: تغییر در توان پمپاژ در اثر وجود نانوسیال با درصدهای حجمی مختلف PAGEREF _Toc396497843 h 87شکل 5-28: تغییر در افت فشار در اثر وجود نانوسیال با درصدهای حجمی مختلف PAGEREF _Toc396497844 h 88شکل 6-1: تغییرات ضریب تکثیر نسبت به درصدهای حجمی مختلف نانوسیال PAGEREF _Toc396497845 h 91شکل 6-2: تغییرات نرخ خوردگی برای نانوسیالات مختلف در طول زمان PAGEREF _Toc396497846 h 92شکل 6-3: هزینه اولیه نانوسیالات مورد بررسی PAGEREF _Toc396497847 h 93شکل 6-4: هزینه خوردگی ناشی از وجود نانوسیالات مختلف در آب PAGEREF _Toc396497848 h 94 TOC h z t "فهرست شکلها؛1"

فهرست اختصاراتMCNPX Monte Carlo N-Particle eXtended
Nu Nusselt Number
Re Reynolds Number
Pr Prandel Number
FSAR Final Safety Analysis ReportNPSH Net Positive Suction Head
BNPP Bushehr Nuclear Power Plant
K Conductivity Constant
∅Heat Flux
LCC Life Cycle Costing
CDMS Corrosion Data Manager Software
فصل اول

1720215315595
مقدمه1-1- کلیات
در سالهای اخیر استفاده از انرژی هسته‌ای برای تولید برق افزایش یافته و همچنین در حال افزایش است. نیروگاه‌های هسته‌ای در آینده‌ای نه چندان دور منبع اصلی تولید برق خواهند بود. در نیروگاه هسته‌ای انرژی حاصل از شکافت هسته‌ای آب را گرم کرده و سپس این آب که در مدار اول است آب موجود در مدار دوم را بخار کرده و بخار با وارد شدن به توربین باعث گردش آن و تولید برق می‌شود. با این حساب انتقال کامل گرما از مدار اول به مدار دوم امری بسیار مهم است و هرچه اتلاف گرما کمتر باشد بازدهی بیشتری خواهیم داشت. نیروگاه‌های امروزی با راندمانی بین 30 تا 40 درصد کار می‌کنند. به عنوان مثال نیروگاه هسته‌ای بوشهر 3000 مگاوات توان حرارتی آن است درحالی‌که توان الکتریکی آن 1000 مگاوات است. از گذشته تحقیقات زیادی برای بالا بردن ضریب انتقال حرارت آب که به عنوان خنک‌کننده در بسیاری از رآکتورها است انجام شده است. یکی از راه‌های افزایش ضریب انتقال حرارت سیال منتقل‌کننده حرارت، استفاده از نانو سیالات است. به این شکل که نانوذراتی که دارای ضریب انتقال حرارت خوبی هستند، مانند نانو ذرات مس را به سیال پایه با درصدهای حجمی مشخصی اضافه می‌کنند. این کار باعث افزایش قابل‌توجه ضریب انتقال حرارت سیال پایه می‌شود. در رآکتور هسته‌ای مسئله پیچیده‌تر است و سیال پایه علاوه بر ضریب انتقال حرارت بالا باید دارای ویژگی‌های دیگری نیز باشد. از این ویژگی‌ها می‌توان به نقش کندکنندگی سیال خنک‌کننده اشاره کرد که نقش سیال پایه را دوگانه می‌کند. در رآکتورهای اتمی برای کنترل راکتور علاوه بر میله‌های کنترل از سموم محلول در خنک‌کننده نیز استفاده می‌کنند. در رآکتورهای آبی اسید بوریک را به آب با غلظت‌های مشخصی اضافه می‌کنند. بورون موجود در اسید بوریک یک سم نوترونی قوی است که سطح مقطع جذب نوترون بالایی دارد. همچنین مسئله اقتصادی اضافه کردن نانوسیال به سیال پایه از اهمیت بالایی برخوردار است. اگر نانوسیالی را بیابیم که هم باعث افزایش انتقال حرارت شود و هم بتواند نقش بوریک اسید را بازی کند و هم توجیه اقتصادی داشته باشد گامی بزرگ برداشته‌ایم. بر این اساس در این مطالعه سعی داریم نانوسیالاتی که از نظر انتقال حرارت مناسب می‌باشند و در مطالعات مورد توجه قرارگرفته‌اند را از نظر نوترونیک، اقتصادی و خوردگی مورد بررسی قرار دهیم و نانو سیالی که به هدف گفته‌شده ما نزدیک باشد را به عنوان نانوسیال ایدهآل معرفی کنیم. برای این کار از نرم‌افزارهایی برای انجام مطالعات نوترونی، خوردگی و اقتصادی استفاده می‌کنیم. از این نرم‌افزارها می‌توان به MCNPX برای انجام مطالعات نوترونیک و CDMS و FREECORP برای مطالعات خوردگی اشاره کرد. نرم‌افزارهای مورداستفاده به‌تفصیل در فصل‌های بعد معرفی خواهند شد. در شکل 1-1 فلوچارت مراحل انجام پایان‌نامه نشان داده‌شده است.

شکل 1-1: فلوچارت مراحل انجام پایان‌نامهفصل دوم

18726151974215
پیشینه تحقیق2-1- مقدمهتاکنون مطالعات بسیاری به‌منظور بررسی  خواص مثبت نانو سیالات صورت گرفته است تحقیق لی ات ال  در سال 1999 نشان‌دهنده ارتقا قابل ملاحظه رسانایی حرارتی نانوسیالات محتوی آب و اتیلن، گلیکول همراه با نانو ذرات اکسید آلومینیم و اکسید مس در دمای اتاق می‌باشد]1[.
2-2- کارهای انجام شدهافزایش رسانایی گرمایی یک موفقیت قابل تحسین را برای استیمن ات ال  به ارمغان  آورد ، هنگامی که آن‌ها افزایش رسانایی را تا 40% با افزودن تنها 4% از نانو ذرات مس خالص با ابعاد متوسط کمتر از 10 نانومتر حاصل نمود. چنین گزارش شد که رسانایی گرمایی نانوذرات می‌تواند بیش از 20% افزایش داده شود در یک پژوهش دیگر داس ات ال  نشان داد که رسانایی گرمایی نانو سیالت در دماهای بالاتر افزایش بیشتری می‌یابد که کاربرد آن را در سردسازی جریان‌های حرارتی بالا مطلوب‌تر می‌نماید]2[.
در این پژوهش این افزایش از 2% به 36% رسیده است هنگامی که دمای اکسید نانوذرات معلق از 21 درجه سانتی‌گراد به 51 درجه سانتی‌گراد افزایش دادند (با غلظت حجمی 1% و 4%) کار پژوهشی پاتل ات ال  با نانوذرات طلا و نقره با قطر 20-10 نانومتر انجام شد آزمایش‌های آن‌ها نیز تأثیرات شدید دما را بر روی رسانایی گرمایی از 5% به 221% در بازه حرارتی 60-30 درجه سانتیگراد نشان داد ]2[.
کلبنسکی ات ال ]3[ نیز مکانیسم انتقال حرارت در نانو سیالات را بررسی نمود و دلایل احتمالی افزایش رسانایی گرمایی نانوسیالات را ارائه کرد: این دلایل شامل اثرات سایز کوچک، تراکم و تجمع نانوسیالات می‌باشد.
افزایش رسانایی حرارتی نانوسیالات به محققان این فرصت را می‌دهد تا پژوهش‌های وسیع‌تری را در این زمینه انجام دهند. افزایش واقعی قابلیت انتقال حرارت را می‌توان در شرایط همرفتی نشان داد و مقالات اندکی  به بحث درباره‌ی کارایی انتقال  حرارت همرفتی نانوسیالات پرداخته‌اند. ژوان و روتزل  دو راهکار متفاوت برای روابط انتقال حرارت نانوسیالات ارائه نمودند. یک راهکار مرسوم، در نظر گرفتن نانوسیالات به عنوان سیال تک فاز می‌باشد و راهکار دیگر لحاظ نمودن ویژگی چند فاز بودن نانوسیالات و نانوذرات پراکنده می‌باشد. سپس ژوان و لی  نتایج بررسی‌های خود را درباره‌ی ویژگی‌های جریان انتقال حرارت همرفتی منتشر نمودند. آن‌ها انتقال حرارت همرفتی نانو سیالاتی را که متشکل از آب غیر یونیزه و ذرات مس با قطر کمتر از 10 نانومتر و با درصد حجم 0.3، 0.5، 0.82، 1، 1.2، 1.5، 2 درصد از کل سیال اندازه‌گیری نمودند و دریافتند که ضریب انتقال حرارت همرفتی نانوسیالات از 6% به 39% افزایش می‌یابد ]4[.

متن کامل در سایت امید فایل 

ون ودینگ ]5[ انتقال حرارت نانو سیال آب و اکسید آلومینیوم را در جریان لایه‌ای تحت شار حرارتی ثابت دیواره مشاهده نمودند و دریافتند که افزایش حرارت نانو سیال با تغییرات عدد رینولدز و غلظت نانوذرات  خصوصاً در ناحیه‌ی ورودی رابطه‌ی مستقیم دارند اخیراً یانگ ات ال راندمان انتقال حرارت نانوسیالات گرافیت را برای جریان لایه‌ای در یک تیوپ دایروی بررسی نمودند.
نجوین سیتی ات ال  ]6[ رفتار انتقال ارتقاء انتقال حرارت نانوسیال اکسید آلومینیوم را برای یک سیستم گرم‌کننده مورد پژوهش قرار دادند آن‌ها دریافتند که ضریب انتقال حرارت تا 40% در مقایسه با سیال اصلی افزایش نشان می‌دهد.
به تازگی داس ات ال، ونگ  و موجومدار، تریساکسری وی  و ونگویسس  ]7[ پژوهش‌های اخیر درباره جریان سیال و ویژگی‌های انتقال حرارت نانوسیالات را در رسانایی، جریان همرفتی تحمیلی و آزاد و جوش را مورد بازبینی قرار دادند و به فرصت‌های موجود برای نیاز به مطالعات آینده اشاره نمودند. ونویسس مقالات منتشرشده‌ای را که درباره‌ی مباحث آزمایشی و تئوری انتقال حرارت همرفتی تحمیلی نانوسیالات می‌باشند را بازنگری نموده و مورد بررسی قرار دادند.
از طرف دیگر تعداد زیادی از محققان گزارش کردند که انتقال حرارت با نانو سیال افزایش مییابد به‌طور مثال لیو ژان یک مطالعه تجربی برای بررسی انتقال حرارت جابجایی و خواص جریان نانو سیال را پیگیری نمودند. نتایج آن‌ها نشان میدهد که ضریب انتقال حرارت جابجایی و خواص جریان نانو سیال با سرعت افزایش پیدا می‌کند و همچنین کسر حجمی، بخش‌های نانو  و از پایه آب در سرعت جریان مشابه بزرگ‌تر است.
داس و همکاران به‌طور تجربی نشان دادند که  هدایت گرمایی نانو سیالات با افزایش دما افزایش مییابد آن‌ها مشاهده کردند که 2 تا 4 درصد هدایت گرمایی افزایش مییابد که میتواند در دماهای 21 تا 52 درجه سانتی‌گراد به دست بیاید ]7[.
در مقایسهی بررسیهای تحقیقی وابستگی استفاده از نانو سیالات در انتقال حرارت جابجایی، مطالعات اندکی در استفاده از نانو سیالات در جابجایی آزاد یافت میشود.
خانافر و همکاران ]8[ مطالعات عددی برای تعیین انتقال حرارت جابجایی طبیعی نانو سیالات در محفظه تحت قیود فیزیکی مختلف را پی گیری کردند. نتایج آن‌ها نشان داد که عدد ناسلت متوسط با افزایش کسر حجمی برای اعداد گراشف مختلف افزایش مییابد.
کیم و همکاران ]9[ یک فاکتور برای توصیف اثربخش نانویی روی بی‌ثباتی جابجایی و مشخصه‌های انتقال حرارت یک سیال مبنا را پیشنهاد کردند. این فاکتور جدید شامل تأثیر نسبت قابلیت هدایت نانو ذرات به سیال پایه، فاکتور شکل نانو ذرات، کسر حجمی نانو ذرات و نسبت ظرفیت گرمایی آن میشود. نتایج آن‌ها نشان میدهد که ضریب انتقال حرارت در حضور نانو سیال با افزایش کسر حجمی نانوساختار ها افزایش مییابد.
افزایش انتقال حرارت جابجایی با استفاده از نانوسیالات توسط نینا و همکاران و نینا و روتا به‌طور تجربی مشاهده شده است.
در طرف دیگر رحیمی و همکاران ]10[ به صورت تجربی دریافتند که حضور نانوساختار (cuo,Al2o3) در آب بر مبنای نانو سیال در داخل استوانه‌ی افقی ضریب جابجایی طبیعی را با افزایش کسر حجمی نانو ذرات، چگالی نانوذره و همچنین نسبت منظری استوانه کاهش مییابد.
هاشمی و همکاران ]11[ به‌طور تجربی گزارش کردند که ضریب جابجایی طبیعی با افزایش تجمع نانوساختارها کاهش مییابد.
گرگوری و همکاران]12[ جابجایی طبیعی را با میکروساختارAl2o3  (تقریباً 250 nm) آب ساکن در محفظه آزمایش کردند. به نظر میرسد که نتایج آن‌ها تأثیر ناچیز ساختارها را روی مقدار عدد ناسلت برای یک محفظه عمودی را شامل میشود. به‌هرحال برای محفظه افقی یک کاهش در عدد ناسلت در مقایسه با حضور آب خالص در عدد رایلی و تجمع ساختارهای بیشتر وجود دارد. نویسندگان، این رفتار غیرعادی را به لایه گذاری نسبت میدهند.
استندبرگ و همکاران]13[ بررسی‌های تجربی روی جابجایی‌های طبیعی نانو سیالات در محفظه عمودی برای اندازه‌های مختلف  و کسر حجمی متفاوت نانو ذرات Al2o3 در بازه 1/0% تا 4% و عدد رایلی در بازه‌ی 105 تا 108 انجام داده‌اند. تنزل اصولی انتقال حرارت در نانوسیالات  شامل نانو ذرات با کسر حجمی بزرگ‌تر از 2% در خارج بازه‌ی عدد رایلی در نتایج آن‌ها مشاهده شد.
به‌هرحال افزایش انتقال حرارت به‌اندازه‌ی 18% با آب خالص که برای نانوسیال حاوی تجمع نانو ذرات 1/0% در رایلی های بالابود نمایش داده شد. معمولاً مدل تئوری قابل قبولی برای بررسی هدایت غیرعادی نانوسیالات وجود ندارد.
بسیاری از محققان هدایت نانو سیالات را بر مبنای قابلیت جابجایی سیال و نانوذرات، شکل نواحی سطح نانوذرات و کسر حجمی و دما قرار داده‌اند.
کبلینسکی و همکاران]14[ و ایستمن و همکاران]15[ مکانیسم‌هایی برای افزایش انتقال حرارت جابجایی پیشنهاد کردند که شامل حرکت براونی نانو ذرات، سطح لایه‌ای مولکولی مایع در مایع جزء وصل‌کننده، انتقال گرما با نانوذرات و تأثیر بر روی دسته‌ی نانوذرات بودند. آن‌ها دلیل آوردند که تأثیر رفتار براونی میتواند بسته به ورودی بزرگ‌تر پخش گرما در مقایسه با پخش براونی ناچیز در نظر گرفته شود.
ایوانس و همکاران اثبات کردند که تأثیر هیدرودینامیکی مربوط به حرکت براونی اثر عکس بر روی هدایت گرمایی نانوسیالات هنگام استفاده از شبیه‌سازی دینامیکی مولکولی و تئوری سینتیک ساده دارد.
تأثیر لایه‌های میانجی جامد یا مایع در افزایش هدایت گرمایی نانوسیالات توسط بسیاری از محققان به صورت تئوری بررسی‌شده است. به‌طور مثال یوو چوی یک مدل تئوری برای بررسی اثر لایه‌های میانجی  مایع و جامد روی مدل Hamilton-Crosser برای توقف ساختارهای نانو کروی پیشنهاد کردند. آن‌ها تلاش کردند که اثبات کنند لایه‌های میانجی جامد و مایع نقش مهمی در تقویت هدایت گرمایی نانوسیالات به‌واسطه‌ی مدل Hamilton-Crosser بازی می‌کنند. به‌هرحال مدل پیشنهادی آن‌ها قادر به پیش‌بینی رفتار غیرخطی هدایت گرمایی نانوسیالات نبود.
بررسی تأثیر بین نانوذره و سیال پایه نیز انجام‌گرفته است. ژو یک مدل بهینه برای تأثیر هدایت گرمایی مؤثر نانوسیالات  بر پایه‌ی تئوری ماکسول (تئوری (تضاد) قطبش میانگین) ایجاد کرد. ژو فرض کرد که مدل توسعه‌یافته میتواند افزایش غیرعادی قابلیت هدایت گرمایی در نانوسیالات را تفسیر کند ]16[ .
بر پایه شبیه‌سازی دینامیک مولکولی  و ارتباط ساده‌ی مایع –جامد، ژو و همکاران توضیح دادند که لایه‌های اتم مایع در حدفاصل مایع – جامد تأثیر قابل ملاحظه روی خواص انتقال گرما ندارند.

پاسخ دهید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *