کنترل خودکار تولید سیستم قدرت در حضور منابع انرژی تجدیدپذیر

وزارت علوم، تحقیقات و فناوری
دانشگاه علوم و فنون مازندران
پایان نامه برای دریافت درجه کارشناسی ارشد
در رشته مهندسی برق – گرایش قدرت
عنوان:
کنترل خودکار تولید سیستم قدرت در حضور منابع انرژی تجدیدپذیر
نگارنده:
بهزاد مرادی
استاد راهنما:
دکتر عبدالرضا شیخ الاسلامی
استاد مشاور:
مهندس رویا احمدی آهنگر
1392

تقدیم به پدر و مادر عزیزم.
تقدیر و تشکّر :
نگارنده بر خود فرض می‌داند تا بدینوسیله مراتب قدردانی و تشکر خود را از زحمات ارزشمند اساتید گرانقدر راهنما و مشاور جناب آقای دکتر عبدالرضا شیخ الاسلامی و سرکار خانم مهندس رویا احمدی آهنگر و نیز جناب آقای دکتر جواد روحی استاد محترم داور صمیمانه ابراز نماید.
چکیده
در یک شبکه قدرت هر ناحیه موظّف به تأمین بار درخواستی ناحیه به همراه تضمین کیفیت توان تولیدی است. انحراف بیش از حدّ مجاز از فرکانس نامی شبکه، باعث آسیب رسیدن به تجهیزات، کاهش عملکرد بار‌های شبکه، تحمیل اضافه بار بر خطوط ارتباطی، تحریک ادوات حفاظتی شبکه و نقص عملکرد در تجهیزات الکترونیکی گشته و حتی در شرایطی سبب فروپاشی شبکه می‌گردد. هدف اصلی در کنترل بار فرکانس و در پی بروز هر تغییری در بار، بازگرداندن هرچه سریع تر فرکانس به مقدار نامی و کمینه نمودن دامنه نوسانات فرکانسی است. در کنار آن کاهش تغییرات توان انتقالی خطوط انتقال و بازگردانی سریع آن به محدوده قابل قبول دو هدف عمده کنترل خودکار تولید(AGC) را تشکیل می‌دهند.
در حال حاضر شبکه قدرت مشمول تغییراتی کلی در بدنه و ساختار خود است. این تغییرات نه به سبب مسائل مربوط به تجدید ساختار یافتن شبکه و برنامه‌ریزی‌های رقابتی است، بلکه به علّت ظهور انواع جدید ادوات تولید توان، تکنولوژی‌های جدید و حجم رو به افزایش منابع انرژی تجدیدپذیر نیز می‌باشد. نیاز فزاینده به انرژی الکتریکی در کنار ذخیره محدود سوخت فسیلی و نگرانی روبه گسترش مشکلات زیست‌محیطی ناشی از مصرف سوخت فسیلی، ضرورت استفاده از منابع انرژی تجدیدپذیر نظیر باد و خورشید و ورود آنها را به شبکه قدرت دوچندان می‌نماید. از طرفی با ظهور منابع انرژی تجدیدپذیر نظیر انرژی باد و خورشید علاقه شدیدی به بررسی تاثیرات استفاده از این منابع در بهره‌برداری و کنترل شبکه قدرت بوجود آمده است. یکپارچگی و پیوستن منابع انرژی تجدیدپذیر به شبکه قدرت فعلی گذشته از منافع اقتصادی که به دنبال دارد، اثرات پررنگی بر کیفیت توان و کنترل فرکانس شبکه باقی می‌گذارد.
افزایش استفاده از منابع انرژی تجدیدپذیر نیاز مبرم به بررسی و انجام مطالعات لازم جهت تعیین تاثیر آنها بر کنترل فرکانس سیستم قدرت را در پی داشته و اهمیّت داشتن برنامه‌های کنترلی مناسب را پر رنگ می‌نماید. در این پایان نامه تأثیر شرکت دادن منابع انرژی تجدیدپذیر در کنترل فرکانس شبکه قدرت چند ناحیه ای با ارائه برنامه های کنترلی جدید مورد مطالعه قرار می‌گیرد.
کلمات کلیدی فارسی: کنترل خودکار تولید، تولید انرژی خورشیدی، تولید انرژی بادی، سیستم ذخیره‌ساز انرژی.
فهرست مطالب
TOC \o “1-3” \h \z \u فصل اول: اصول کنترل بار فرکانس سیستم قدرت PAGEREF _Toc382127561 \h 11-1- مقدمه PAGEREF _Toc382127562 \h 21-2- ضرورت پایداری فرکانس در شبکه قدرت PAGEREF _Toc382127563 \h 31-3- ساختار مطالعاتی پایان‌نامه PAGEREF _Toc382127564 \h 7فصل دوم: کنترل خودکار تولید PAGEREF _Toc382127565 \h 92-1- تعریف مسئله PAGEREF _Toc382127566 \h 102-2- پیشینه تحقیق PAGEREF _Toc382127567 \h 172-2-1- وضعیت فعلی استفاده از منابع انرژی تجدیدپذیر PAGEREF _Toc382127568 \h 172-2-2- نقش تولید خورشیدی در کنترل فرکانس شبکه PAGEREF _Toc382127569 \h 192-2-3- حضور تولید بادی در کنترل فرکانس PAGEREF _Toc382127570 \h 212-2-4- استفاده از ذخیره‌سازها PAGEREF _Toc382127571 \h 222-3- جمع بندی PAGEREF _Toc382127572 \h 23فصل سوم: کنترل فرکانس تولید بادی و خورشیدی PAGEREF _Toc382127573 \h 243-1- مقدمه PAGEREF _Toc382127574 \h 253-2- مشارکت تولید بادی ژنراتور القایی دو سو تغذیه در تنظیم فرکانس شبکه PAGEREF _Toc382127575 \h 253-2-1- کنترل فرکانس توربین بادی سرعت متغیّر PAGEREF _Toc382127576 \h 263-2-2- مدل توربین بادی PAGEREF _Toc382127577 \h 273-2-3- مقدارسنجی انرژی چرخشی قابل دسترسی از توربین-ژنراتور PAGEREF _Toc382127578 \h 303-2-4- کاربرد پشتیبانی موقّت توان اکتیو DFIG در کنترل فرکانس سیستم قدرت PAGEREF _Toc382127579 \h 353-2-5- تغییر در تنظیم دروپ واحد‌های تولید بادی توسط DFIG بدون قابلیّت پشتیبانی فرکانس PAGEREF _Toc382127580 \h 363-2-6- تغییر در ثابت لختی سیستم بدون پشتیبانی فرکانس از طرف تولید بادی PAGEREF _Toc382127581 \h 363-2-7- تغییر در تنظیم فرکانس و ثابت لختی سیستم در حضور سیستم پشتیبانی فرکانس PAGEREF _Toc382127582 \h 363-2-8- کنترلر پیشنهادی برای پشتیبانی توان اکتیو از DFIG برای کنترل فرکانس PAGEREF _Toc382127583 \h 393-3- مشارکت واحد های تولید توان خورشیدی در کنترل فرکانس شبکه PAGEREF _Toc382127584 \h 403-3-1- مشخّصات پانل‌های خورشیدی و مدلسازی آنها PAGEREF _Toc382127585 \h 413-3-2- استراتژی کنترلی پیشنهادی برای مزرعه خورشیدی PAGEREF _Toc382127586 \h 443-3-3- تغییر در تنظیم دروپ واحد‌های تولیدی در حضور تولید خورشیدی با ضریب نفوذ Lpv PAGEREF _Toc382127587 \h 443-3-4- تغییر در ثابت لختی سیستم در حضور تولید خورشیدی PAGEREF _Toc382127588 \h 443-3-5- مشارکت واحد تولید خورشیدی در تنظیم فرکانس شبکه PAGEREF _Toc382127589 \h 453-3-6- الگوریتم سطح 2 کنترلی برای کنترل توان اکتیو PAGEREF _Toc382127590 \h 463-3-7- حالت کنترلی دروپ برای سیستم‌های خورشیدی PAGEREF _Toc382127591 \h 473-4- استفاده از ذخیره‌ساز‌های انرژی در سیستم قدرت PAGEREF _Toc382127592 \h 513-4-1- مدل ذخیره‌ساز باتری PAGEREF _Toc382127593 \h 513-5- الگوریتم بهینه‌سازی نوسان ذرات PAGEREF _Toc382127594 \h 533-6- شبکه ترکیبی PAGEREF _Toc382127595 \h 543-7- جمع بندی PAGEREF _Toc382127596 \h 55فصل چهارم: شبیه سازی و ارائه نتایج PAGEREF _Toc382127597 \h 574-1- مقدمه PAGEREF _Toc382127598 \h 584-2- حضور DFIG در کنترل فرکانس سیستم قدرت PAGEREF _Toc382127599 \h 584-3- مشارکت سیستم‌های خورشیدی در کنترل فرکانس سیستم قدرت PAGEREF _Toc382127600 \h 674-4- مشارکت همزمان تولید بادی DFIG و سیستم‌های خورشیدی در کنترل فرکانس سیستم قدرت PAGEREF _Toc382127601 \h 714-5- استفاده از ذخیره‌ساز باتری در سیستم قدرت PAGEREF _Toc382127602 \h 754-6- بهینه‌سازی پاسخ دینامیکی شبکه PAGEREF _Toc382127603 \h 764-7- جمع بندی PAGEREF _Toc382127604 \h 81فصل پنجم: نتیجه گیری و ارائه پیشنهادهای ممکن PAGEREF _Toc382127605 \h 825-1- بحث و نتیجه گیری PAGEREF _Toc382127606 \h 835-2- پیشنهادات PAGEREF _Toc382127607 \h 84ضمائم PAGEREF _Toc382127608 \h 85منابع و مراجع PAGEREF _Toc382127609 \h 86
لیست جداول
TOC \h \z \c “جدول 3-” جدول 3- 1تغییر در تنظیم دروپ واحد های تولیدی و لختی سیستم برای ضریب نفوذ های متفاوت باد PAGEREF _Toc378258487 \h 38 TOC \h \z \c “جدول 4-”
جدول 4- 1سناریو‌های باتری در شبکه و مقدار شایستگی متناسب با ضریب نفوذ منابع و باتری PAGEREF _Toc382123668 \h 76جدول 4- 2 مقادیر بهینه شده توسط الگوریتم PSO PAGEREF _Toc382123669 \h 78 TOC \h \z \c “جدول”
جدول 1مشخصات نامی سیستم قدرت مورد مطالعه PAGEREF _Toc378258490 \h 85جدول 2 پارامترهای به کار رفته در الگوریتم PSO PAGEREF _Toc378258491 \h 85
لیست تصاویر و نمودارها
TOC \h \z \c “شکل 2-” شکل 2- 1 بلوک دیاگرام مدل توربین ژنراتور PAGEREF _Toc378165670 \h 11شکل 2- 2 مدل ساده شده ی گاورنر PAGEREF _Toc378165671 \h 11شکل 2- 3 مدل ساده شده ی توربین PAGEREF _Toc378165672 \h 11شکل 2- 4 مدل توربین باز گرمکن PAGEREF _Toc378165673 \h 12شکل 2- 5 مدل خطی و ساده شده کنترل فرکانس سیستم قدرت PAGEREF _Toc378165674 \h 12شکل 2- 6 مدل کنترل بار فرکانس سیستم چند ماشینه PAGEREF _Toc378165675 \h 13شکل 2- 7 شماتیک کلی سیستم دو ناحیه ای قدرت PAGEREF _Toc378165676 \h 13شکل 2- 8 مدل خطی سیستم دو ناحیه ای قدرت با حلقه کنترلی تکمیلی PAGEREF _Toc378165677 \h 16 TOC \h \z \c “شکل 3-”
شکل 3- 1 بلوک دیاگرام مدل توربین بادی سرعت متغیّر PAGEREF _Toc378165678 \h 27شکل 3- 2 منحنی‌های C_p برای زاویه‌های پره متفاوت PAGEREF _Toc378165679 \h 29شکل 3- 3 توان و سرعت روتور توربین به عنوان تابعی از سرعت باد PAGEREF _Toc378165680 \h 29شکل 3- 4 مدل توربین بادی سرعت متغیّر برای وزش باد با سرعت‌های کم و متوسط (کنترلر زاویه غیر فعّال شده است) PAGEREF _Toc378165681 \h 30شکل 3- 5 توان مکانیکی تأمین شده از طرف DFIG برای سرعت‌های مختلف باد (B=0) PAGEREF _Toc378165682 \h 31شکل 3- 6 مدت زمان تداوم افزایش توان پله ای موقت در خروجی توان الکتریکی توربین بادی برای سرعت‌های کم وزش باد PAGEREF _Toc378165683 \h 33شکل 3- 7 مدت زمان تداوم افزایش توان پله ای موقت در خروجی توان الکتریکی توربین بادی برای سرعت‌های متوسّط وزش باد PAGEREF _Toc378165684 \h 34شکل 3- 8 زاویه شیب پره برای برداشت سطوح مختلف توان اکتیو در سرعت‌های بالای وزش باد PAGEREF _Toc378165685 \h 35شکل 3- 9 کنترلر پیشنهادی برای پشتیبانی فرکانس PAGEREF _Toc378165686 \h 40شکل 3- 10 مدار معادل ماژول خورشیدی PAGEREF _Toc378165687 \h 41شکل 3- 11 ژنراتور خورشیدی متصل به شبکه PAGEREF _Toc378165688 \h 42شکل 3- 12 منحنی V_I ماژول خورشیدی PAGEREF _Toc378165689 \h 43شکل 3- 13 منحنی V_P ماژول خورشیدی PAGEREF _Toc378165690 \h 43شکل 3- 14 ساختار اصلی سیستم کنترلی PAGEREF _Toc378165691 \h 45شکل 3- 15 دیاگرام کنترل دروپ فرکانس PAGEREF _Toc378165692 \h 49شکل 3- 16 کنترل دروپ حالت ماندگار سیستم خورشیدی PAGEREF _Toc378165693 \h 50شکل 3- 17 ساختمان کنترل دروپ پیشنهادی برای سیستم خورشیدی PAGEREF _Toc378165694 \h 51شکل 3- 18 بلوک دیاگرام مدل خطی ذخیره‌ساز باتری PAGEREF _Toc378165695 \h 52شکل 3- 19روند اجرایی تکنیک PSO PAGEREF _Toc378165696 \h 54شکل 3- 20 بلوک دیاگرام سیستم دو ناحیه ای قدرت در حضور مزرعه بادی DFIG و مزرعه خورشیدی و ذخیره ساز باتری PAGEREF _Toc378165697 \h 54 TOC \h \z \c “شکل 4-”
شکل 4- 1تغییرات فرکانس ناحیه 1 در حضور سطوح مختلف تولید بادی در سیستم قدرت PAGEREF _Toc378165698 \h 59شکل 4- 2 تغییرات فرکانس ناحیه 2 در حضور سطوح مختلف تولید بادی در سیستم قدرت PAGEREF _Toc378165699 \h 60شکل 4- 3 تغییر توان ژنراتور ناحیه 1 PAGEREF _Toc378165700 \h 60شکل 4- 4 تغییر توان ژنراتور ناحیه 2 PAGEREF _Toc378165701 \h 61شکل 4- 5 تغییرات توان انتقالی خط ارتباطی بین ناحیه‌ای PAGEREF _Toc378165702 \h 61شکل 4- 6 تغییرات فرکانس ناحیه 1 برای حالت‌های در نظر گرفته شده PAGEREF _Toc378165703 \h 62شکل 4- 7 تغییرات فرکانس ناحیه 2 برای حالت‌های در نظر گرفته شده PAGEREF _Toc378165704 \h 63شکل 4- 8 تغییرات توان انتقالی خطوط PAGEREF _Toc378165705 \h 63شکل 4- 9 تغییرات توان خروجی ژنراتور سنکرون ناحیه 1 PAGEREF _Toc378165706 \h 65شکل 4- 10 تغییرات توان خروجی ژنراتور سنکرون ناحیه 2 PAGEREF _Toc378165707 \h 65شکل 4- 11 تغییرات فرکانس ناحیه 1 PAGEREF _Toc378165708 \h 66شکل 4- 12 تغییرات فرکانس ناحیه 2 PAGEREF _Toc378165709 \h 66شکل 4- 13 تغییرات توان انتقالی بین ناحیه 1 و 2 PAGEREF _Toc378165710 \h 67شکل 4- 14 تغییرات فرکانس ناحیه 1 برای حالت‌های در نظر گرفته شده PAGEREF _Toc378165711 \h 69شکل 4- 15تغییرات فرکانس ناحیه 2 برای حالت‌های در نظر گرفته شده PAGEREF _Toc378165712 \h 69شکل 4- 16تغییرات توان انتقالی خطوط برای موارد در نظر گرفته شده PAGEREF _Toc378165713 \h 70شکل 4- 17تغییرات توان خروجی ژنراتور سنکرون ناحیه 1 PAGEREF _Toc378165714 \h 70شکل 4- 18تغییرات توان خروجی ژنراتور سنکرون ناحیه 2 PAGEREF _Toc378165715 \h 71شکل 4- 19تغییرات فرکانس ناحیه 1 برای حالت‌های در نظر گرفته شده PAGEREF _Toc378165716 \h 72شکل 4- 20 تغییرات فرکانس ناحیه 2 برای حالت‌های در نظر گرفته شده PAGEREF _Toc378165717 \h 73شکل 4- 21تغییرات توان انتقالی خط ارتباطی PAGEREF _Toc378165718 \h 73شکل 4- 22تغییرات توان خروجی ژنراتور سنکرون ناحیه 1 PAGEREF _Toc378165719 \h 74شکل 4- 23تغییرات توان خروجی ژنراتور سنکرون ناحیه 2 PAGEREF _Toc378165720 \h 74شکل 4- 24 تغییرات توان خروجی منابع تجدیدپذیر با استفاده از برنامه‌های کنترلی پیشنهادی PAGEREF _Toc378165721 \h 75شکل 4- 25 مقایسه انحراف فرکانس ناحیه 1 در حضور مقادیر بهینه باتری و ثات انتگرال گیر ناحیه PAGEREF _Toc378165722 \h 78شکل 4- 26 مقایسه انحراف فرکانس ناحیه 2 در حضور مقادیر بهینه باتری و ثابت انتگرال گیر ناحیه PAGEREF _Toc378165723 \h 79شکل 4- 27 مقایسه تغییرات توان انتقالی خط واسط در حضور مقادیر بهینه در دو ناحیه PAGEREF _Toc378165724 \h 79شکل 4- 28 تغییرات توان خروجی ژنراتور سنکرون ناحیه 1 PAGEREF _Toc378165725 \h 80شکل 4- 29 تغییرات توان خروجی ژنراتور سنکرون ناحیه 2 PAGEREF _Toc378165726 \h 80
فهرست علائم و اختصارات
Biضریب بایاس فرکانس کنترل تکمیلی ناحیه iRiثابت تنظیم دروپ گاورنر ناحیه iHلختی ناحیه
Dعامل میراکنندگی بار ناحیه
Ttiثابت زمانی توربین ناحیه iTriثابت زمانی توربین بازگرمکن ناحیه iTgiثابت زمانی گاورنر ناحیه iKriبهره مدل توربین بازگرمکن
Kiiبهره انتگرال‌گیر کنتذل تکمیلی ناحیه iTijضریب توان سنکرون‌کننده خط ارتباطی میان دو ناحیه i و jαijنسبت توان نامی دو ناحیه i و j∆Pdiتغییر بار در ناحیه i∆Ptie,ijتغییرات توان انتقالی خط ارتباطی میان دو ناحیه i و j∆fiتغییرات فرکانس ناحیه iفصل اول: اصول کنترل بار فرکانس سیستم قدرت
1-1- مقدمهعملکرد مطلوب یک سیستم قدرت منوط به برابر بودن میزان توان تولید با توان مصرفی و تلفات می‌باشد. در شبکه قدرت نقطه کار سیستم دائماً تغییر می‌‎کند. بنابر این جهت برقراری توازن میان تولید و مصرف باید سطح تولید واحدهای تولیدی تغییر یابد. در نتیجه فرکانس نامی شبکه و توان اختصاص یافته به واحد‌ها دچار تغییراتی می‌گردد. این انحرافات می‌تواند سبب ایجاد تاثیراتی ناخواسته در شبکه گردد. کنترل بار فرکانس به همراه کنترل خودکار تولید به عنوان یکی از مهّم ترین سرویس‌های جانبی در طراحی و بهره برداری سیستم‌های قدرت به منظور کارایی بهتر، افزایش کیفیت توان و قابلیّت اطمینان شبکه، نقش اصلی در کنترل این نوسانات بر عهده دارد. اهداف اصلی کنترل خودکار تولید را می‌توان در موارد زیر خلاصه کرد:
تعقیب مناسب الگوی بار
به صفر رساندن خطای حالت ماندگار فرکانس
کمینه کردن انحرافات توان خطوط انتقالی توان بین ناحیه ای
کمینه کردن حداکثر فرا جهش و زمان نشست برای انحرافات فرکانس ناحیات و توان انتقالی خطوط.
در حال حاضر شبکه قدرت مشمول تغییراتی کلی در بدنه و ساختار خود است. بخشی از این تغییرات به سبب مسائل مربوط به تجدید ساختار یافتن شبکه و برنامه‌ریزی‌های رقابتی است. تغییری که عملاً سیستم قدرت را از حالتی که در آن تنها یک مالک برای سیستم توزیع، انتقال و تولید وجود دارد، به سمتی سوق می‌دهد که شرکت‌های تولیدی انرژی در رقابت با یکدیگر توان درخواستی مصرف کنندگان را تأمین می کنند. این تراکنش‌های توان مرزبندی جغرافیایی خاصّی نمی‌پذیرد و لزوماً تولید و مصرف در یک ناحیه واقع نمی شوند. علاوه بر آن ورود مصرف کنندگان بزرگ نظیر کارخانه‌های فولاد با نرخ تغییرات توان قابل توجّه به بازار مصرف، می‌توانند سبب بروز اغتشاشات شدید فرکانسی گردند. بخش دیگری از تغییرات را می‌توان به ظهور انواع جدید ادوات تولید توان، تکنولوژی‌های جدید و حجم رو به افزایش بهره برداری از منابع انرژی تجدیدپذیر نیز نسبت داد. نیاز فزاینده به انرژی الکتریکی در کنار ذخیره محدود سوخت فسیلی و نگرانی روبه گسترش مشکلات زیست محیطی ناشی از مصرف سوخت فسیلی، ضرورت استفاده از منابع انرژی تجدیدپذیر نظیر باد و خورشید و ورود آنها را به شبکه قدرت دوچندان می‌نماید. در نتیجه با توجّه به رشد روز افزون تقاضا در سیستم‌های قدرت، در محیط رقابتی و ورود منابع انرژی تجدیدپذیر به سیستم قدرت، هر یک از عملیات های کنترلی خودکار نظیر کنترل خودکار تولید، نقش بسیار مهّمی در حفظ امنیت و پایداری سیستم قدرت پیدا می‌‎کند.
1-2- ضرورت پایداری فرکانس در شبکه قدرتفرکانس در شبکه‌های قدرت نشان دهنده وجود توازن بین توان تولیدی و مصرفی است. اگر این توازن برقرار باشد، فرکانس سیستم ثابت خواهند ماند. با کاهش توان مصرفی فرکانس شبکه افزایش می‌یابد و با افزایش تقاضای بار فرکانس افت می‌‎کند. تغییرات فرکانس سبب تغییر در بار‌های حسّاس به فرکانس در شبکه نیز خواهد شد CITATION کرا \l 1065 [1].
پایداری فرکانس در شبکه به دو دسته کوتاه مدت و بلند مدت تقسیم می‌شود. در پایداری کوتاه مدت، نگرانی عمده تغییرات ناگهانی فرکانس می‌باشد؛ ولی در پایداری بلند مدت کارایی دینامیکی شبکه و باز گرداندن فرکانس به مقدار نامی آن هدف اصلی به حساب می‌آید CITATION pku89 \l 1065 [2].
سیستم‌های قدرت معمولا در فرکانس نامی (50 یا 60 هرتز) مورد بهره برداری قرار می گیرند. تمام اجزای سیستم قدرت اعم از توربین ژنراتورها، ترانسفورماتورها، موتور‌ها، تجهیزات الکترونیکی و غیره برای کار در این فرکانس نامی طراحی و ساخته شده‌اند. انحراف فرکانس شبکه از مقدار نامی خود باعث دور شدن آنها از حالت نرمال کاری شان می‌گردد. گرچه که میزان حسّاسیت این ادوات به تغییرات فرکانس متفاوت است. افت فرکانس در شبکه تاثیرات مشخّصی بر عملکرد این ادوات باقی می‌گذارد. به برخی از پیامدها در زیر اشاره شده ‌است:
ترانسفورماتورها بر اساس رابطه E=۴/۴۴Nfφ ، به نحوی طراحی و ساخته شده‌اند که بدون اشباع هسته، از حدّاکثر چگالی شار آن استفاده شود. در واقع هسته در نقطه زانویی و نزدیک به اشباع کار می‌‎کند. در پی بروز کاهشی در فرکانس و با توجّه به رابطه فوق، لازم است جهت حفظ سطح ولتاژ القایی، شار مغناطیسی از مقدار نامی بیشتر گردد. در پی بروز چنین وضعیتی، احتمال به اشباع رفتن هسته ترانسفورماتور قریب الوقوع می‌نماید. اشباع هسته جریان‌های مغناظیس کنندگی بزرگ و غیر سینوسی را نیز به دنبال دارد.
سرعت چرخش ماشین‌های القایی و سنکرون با فرکانس شبکه متناسب است و بالطبع بروز هر انحرافی در فرکانس، تغییر سرعت ماشین‌ها را در پی دارد. این تغییر می‌تواند عملکرد نامطلوب در بار متصّل به شفت ماشین را در پی داشته باشد. علاوه بر آن پدیده اشباع هسته نیز همانند ترانسفورماتورها، محتمل است.
ساعت‌های الکترونیکی و ثوابت، با فرکانس شبکه نسبت مستقیم دارند و هر گونه تغییری در فرکانس مستقیماً بر عملکرد صحیح آنها تاثیر می‌گذارد. در نتیجه تغییر فرکانس، موجب ضعف عملکرد این ادوات خواهد شد.
توربین‌های شبکه قدرت و بالاخص توربین‌های بخار را میتوان حسّاس‌ترین اجزاء شبکه نسبت به تغییرات فرکانس دانست. هر توربین بخار دارای روتوری کشیده است که معمولا از چندین بخش تشکیل شده است. هر بخش شامل مجموعه ای از پره‌های ثابت و متحرک است. تنش‌های مکانیکی وارده به روتور در قسمت‌های مختلف یکسان نیست. این ساختار پیچیده دارای مجموعه وسیعی از فرکانس‌های تشدید مکانیکی است. تغییر در فرکانس می‌تواند موجب بروز پدیده تشدید زیرسنکرون در توربین گردد. طراحی توربین باید به صورتی انجام پذیرد که در پی بروز انحراف فرکانس در سیستم قدرت، فرکانس حاصله به اندازه کافی با فرکانس‌های تشدید فاصله داشته باشد. هرگونه افت فرکانس سبب کاهش سرعت توربین شده و مرز مضارب سرعت با فرکانس‌های تشدید را کم می‌‎کند. بر اثر نزدیک شدن سرعت توربین به یکی از این فرکانس‌های تشدید، دامنه ارتعاشات توربین افزایش می‌یابد و خطر بروز تشدید زیر سنکرون را افزایش می‌دهد CITATION کرا \l 1065 [1].
از آن جا که تغییر فرکانس شبکه نتیجه وجود عدم تعادل بین توان تولیدی و مصرفی (به اضافه ی تلفات) است، هر گونه اقدام اصلاحی تغییر سطح تولید و یا مصرف را در پی دارد. برای حفظ فرکانس شبکه راهکارهایی وجود دارند که در زیر به بعضی از آنها اشاره می‌شود:
واحدهای آبی و یا گازی واکنش سریع که قادرند طی زمان محدودی (در چند دقیقه) وارد مدار شده و کمبود شبکه را جبران سازند.
استفاده از ظرفیت آزاد نیروگاه‌ها (رزرو گردان) که مستلزم عملکرد صحیح سیستم کنترل سرعت توربین، موسوم به گاورنر است. ثابت زمانی پاسخ گاورنر در نیروگاه‌های مختلف متفاوت است. به عنوان مثال واحد‌های بخاری که در آن تغییر سریع فشار دیگ بخار مجاز نیست، نیازمند چند ده دقیقه زمان جهت تنظیم بارند. با عملکرد گاورنر نیروگاه‌های شبکه، اضافه بار متناسب با تنظیم دروپ سیستم گاورنر سرعت، بین واحد‌های تولیدی توزیع می‌شود.
از آنجا که توان مصرفی شبکه به سطح ولتاژ آن وابسته است، می‌توان با کنترل ولتاژ شبکه ی توزیع تا حدی تقاضای بار را کنترل کرد. کاهش ولتاژ توزیع منجر به تغییر در بار خانگی می‌گردد. اعمال این تغییرات از طریق تغییر تپ چنجر ترانسفورماتور‌های شبکه میسّر است و نیازمند محدوده زمانی در حدود چند دقیقه است.
یکی دیگر از راه‌های حفظ فرکانس سیستم، حذف بار است. حذف بار یکی از سریع‌ترین راه‌های جبران کمبود توان حقیقی در سیستم قدرت به حساب می‌آید. فاصله زمانی صدور فرمان حذف بار تا انجام آن بسیار محدود بوده و در واقع زمان عملکرد کلیدهای قدرت شبکه تعیین کننده سرعت عمل حذف بار است. زمان لازم برای عملکرد کلید قدرت معمولاً چند سیکل الکتریکی است. صدور فرمان می‌تواند به صورت دستی توسط بهره بردار شبکه و یا توسط مکانیزمی هوشمند و خودکار صادر می‌شود. حذف بار دستی جهت افت ماندگار فرکانس شبکه صورت می‌گیرد و میزان آن در حدود 5% است. حذف بار دستی در واقع زمانی عمل می‌‎کند که ذخیره گردان یا واحد‌های راه اندازی سریع، در کوتاه مدت قادر به جبران عامل افت فرکانس نباشند و وضعیت شبکه به حالت هشدار وارد شده باشد. در برابر حذف بار دستی از حذف بار خودکار برای حذف لااقل چند ده درصد بار شبکه در زمانی بسیار کوتاه استفاده می‌شود. زمان عملکرد حذف بار خودکار مجموع زمان تشخیص افت فرکانس و زمان قطع کلید قدرت است و حداکثر چند ده سیکل الکتریکی به طول می انجامد.
از میان روش‌های فوق، از رزرو گردان در حضور واحد کنترل فرکانس برای جبران نوسانات فرکانسی شبکه که دارای دامنه ای محدود هستند، استفاده می‌شود. در این حالت معمولاً تعادل توان با عملکرد گاورنر واحدهای تولیدی شبکه برقرار می‌شود. حذف بار دستی و کنترل ولتاژ شبکه پس از رسیدن سیستم به وضعیت پایدار مورد استفاده قرار می‌گیرند و به صورت عمده خطاهای ماندگار شبکه را اصلاح می‌کنند. حذف بار خودکار هر چند سریع‌ترین مکانیزم محسوب می‌شود اما آخرین راه حل برای پاسخ به عدم توازن توان حقیقی شبکه است. این راه حل تنها زمانی انتخاب می‌شود که عدم تعادل به قدری بزرگ باشد که گاورنر‌ها فرصت لازم برای پاسخ به آن را نداشته باشند. در این حالت فرکانس شبکه به سرعت افت می‌‎کند و از محدوده ی مجاز کار دائمی خارج می‌شود. با رسیدن وضعیت شبکه به آستانه ی خطر، این مکانیزم سریعاً بار اضافی سیستم را حذف می‌‎کند. مهّم‌ترین اشکال این روش آنست که هزینه ی حفظ انسجام سیستم و حفظ پایداری، قطع برق و انرژی الکتریکی و ضرر مالی منتج به آنست.
افزایش ضریب نفوذ انرژی تجدیدپذیر در سیستم قدرت شاید به معنی ارتقای عدم قطعیت‌ها، موانع جدید در بهره برداری و پیدایش سوال‌های جدید در باب چگونگی کنترل این منابع در کنار ساختار‌هایی مانند کنترل خودکار تولید به نظر آید. سوال مهّمی که در بدو امر نظر مخاطب را به خود معطوف می‌دارد این است که در صورت افزایش ضریب نفوذ منابع انرژی تجدیدپذیر در شبکه، ملزومات کنترل خودکار چگونه با شرایط جدید مطابقت داده می‌شوند؟
اثرات ورود این منابع با ضریب نفوذ بالا در شبکه را، باید در چهارچوب‌های زمانی مناسب دید. در چهارچوب‌های زمانی چند ثانیه تا چندین دقیقه، قابلیّت اطمینان کلی سیستم قدرت تماماً بوسیله ادوات کنترلی خودکار و سیستم‌های کنترلی نظیر کنترل خودکار تولید، سیستم گاورنر سرعت ژنراتور‌ها و سیستم‌های تحریک آنها، پایدارسازهای سیستم قدرت، تنظیم کننده‌های خودکار ولتاژ، رله‌ها و برنامه‌های ‌حفاظتی مخصوص و سیستم‌های تشخیص و عملیاتی خطا در شبکه کنترل می‌شوند. در چهار چوب زمانی چند دقیقه تا یک هفته، بهره‌برداران سیستم می بایست تولید توان را به نحوی مدیریت نمایند تا با برقراری سطحی منطقی و اقتصادی از قابلیّت اطمینان، تولید نیروگاهی را با توجّه الگوی بار مصرف کنندگان و همچنین قیود عملیاتی شبکه تطبیق دهند.
واحدهای تولیدی انرژی تجدیدپذیر باید ملزومات فنی لازم جهت کنترل ولتاژ و فرکانس را در خود داشته باشد و نیز در صورت بروز شرایط هشدار در شبکه از خود انعطاف لازم را نشان دهند. در کنار آن واحدهای تولیدی انرژی تجدیدپذیر می باید سرعت عمل لازم جهت ایزوله ساختن واحد تولیدی در صورت بروز وضعیتی بحرانی در شبکه را از در خود ملحوظ دارد. آنها باید به عنوان عضوی از شبکه الکتریکی به صورت موثری فرمان پذیر باشند و به خصوص بتوانند در زمان بروز اغتشاشی در شبکه زمانیکه امنیت شبکه برق در معرض خطر باشد از خود انعطاف لازم را نشان دهند. ضریب نفوذ بالای تولیدات تجدیدپذیر به خصوص در مکان‌هایی دور از مراکز بار و تولیدات متداول انرژی، خطر اضافه بار بر روی خطوط انتقال توان را افزایش می‌دهد و در نتیجه بازنگری در طراحی شبکه و احیاناً اضافه نمودن خطوط ارتباطی جدید جهت پیش گیری از بروز اضافه بار بروی ارتباطی را طلب می‌‎کند. علاوه برآن به روز کردن کد‌های شبکه در حضور ضریب بالای تولیدات تجدیدپذیر نیز ضروری به نظر می‌رسد.
1-3- ساختار مطالعاتی پایان‌نامهبرای غلبه بر موانع نامطلوب در استفاده از منابع انرژی تجدیدپذیر نظیر باد و خورشید با ضریب نفوذ بالا در شبکه چند ناحیه ای قدرت، داشتن برنامه کنترلی مناسب جهت کنترل فرکانس شبکه ضروری است. از اینرو موضوعی که این پایان‌نامه سعی در پوشش آن دارد، به کنترل فرکانسِ تولید بادی و تولید خورشیدی و مشارکت آنها در کنترل اولیّه فرکانس باز می‌گردد. به طور کلی می‌توان حوزه ی دید کار حاضر را در چند بند زیر خلاصه کرد:
ارایه طرح کنترلی جدیدی برای شرکت دادن تولید خورشیدی در تنظیم فرکانس ناحیه در سیستم چند ناحیه ای قدرت.
مشارکت دادن تولید خورشیدی در کنترل اولیّه فرکانس.
پیشنهاد برنامه کنترلی مناسب جهت استخراج انرژی جنبشی ذخیره شده در جرم چرخان توربین، در پی بروز اغتشاش باری در شبکه و کمک گرفتن از این توان اضافی جهت کم کردن افت اولیّه فرکانس در پی بروز آن انحراف بار در سیستم چند ناحیه ای قدرت.
مشارکت دادن تولید بادی DFIG در کنترل اولیّه فرکانس .
بررسی پاسخ دینامیکی سیستم دو ناحیه قدرت متشکّل از واحد‌های حرارتی در حضور تولید خورشیدی/بادی/ هر دو، در سیستم قدرت.
استفاده از ذخیره‌ساز‌های انرژی برای کاهش نوسانات توان خروجی در سمت تولید بادی و برای کمک به قابلیّت تنظیم فرکانس و جلوگیری از بروز تغییرات شدید توان در سمت تولید خورشیدی.
بهینه‌سازی بهره انتگرال‌گیر‌های کنترل تکمیلی دو ناحیه، ضرایب نفوذ بهینه تولیدات تجدیدپذیر(جهت تأمین سطح بهینه ای از پشتیبانی فرکانس) و همچنین تعیین ظرفیت ذخیره‌ساز در دو ناحیه، برای داشتن کمترین نرخ تغییرات فرکانس دو ناحیه و توان انتقالی خط واسط دو ناحیه.
به این صورت می‌توان مطالبی را که در فصل‌های بعدی بیان می‌شود، سازماندهی کرد. در فصل دوم پیشینه تحقیق مفصلاً بررسی می‌گردد. در فصل سوم به مطالعه و بررسی چگونگی استحصال توان بادی بوسیله DFIG پرداخته می شود. ایده ی استفاده انرژی جنبشی موجود در جرم چرخان توربین بادی و تزریق آن به شبکه جهت کاهش افت اولیّه فرکانس در زمان وقوع افزایش باری در شبکه مورد توجّه قرار می‌گیرد. در ادامه ساختار اصلی واحد تولید خورشیدی معرفی می‌شود. پس از آن برنامه کنترلی مناسبی جهت شرکت دادن تولید خورشیدی در کنترل اولیّه فرکانس بیان می‌شود. فصل چهارم به ارائه نتایج شبیه سازی اختصاص دارد. سیستم دو ناحیه ای حرارتی به عنوان مدل پایه در نظر گرفته می‌شود و پاسخ دینامیکی آن به انحراف بار در هر ناحیه شبیه سازی می گردد. اثر ورود تولید DFIG به شبکه با ضریب نفوذ مشخّصی در حضور برنامه کنترلی جهت پشتیبانی موقّت توان اکتیو و بدون حضور آن، بررسی می‌شود. تاثیرات ورود تولید خورشیدی با ضریب نفوذ بالا در شبکه در حضور استراتژی کنترلی پیشنهادی و عدم حضور آن بررسی می‌شود. در مرحله آخر تاثیرات توأماً ورود تولیدات باد و خورشید، در حضور برنامه‌های کنترلی مربوطه شان و در نبود آنها با مدل اصلی مقایسه می‌شود. در گام بعد با احتساب اثر ورود ذخیره‌ساز پارامترهای مهّم شبکه بهینه‌ می گردند. در فصل پنجم، اقدامات صورت گرفته جهت مطالعه تأثیرات ورود تولیدات بادی DFIG و تولید خورشیدی به شبکه جمع بندی شده و در انتها گام‌ها و پیشنهادهای ممکن در ادامه ی مسیر حاضر بیان می شوند.
فصل دوم: کنترل خودکار تولید
2-1- تعریف مسئلهسیستم قدرت ذاتی غیر خطی و متغیّر با زمان دارد. برای بررسی و تحلیل پاسخ فرکانسی سیستم قدرت نسبت به اغتشاشات کوچک بار می‌توان از مدل خطی شده ی سیستم استفاده کرد. اگرچه که در مطالعات پایداری دینامیکی شبکه، مطالعات کنترل ولتاژ و فرکانس را نمی‌توان مستقل از هم در نظر گرفت، ولی با توجّه به این که دینامیک‌های موجود در پاسخ فرکانسی سیستم در قیاس با دینامیک‌های ولتاژ و زاویه روتور بسیار کندتر عمل می‌کند، می‌توان برای مطالعات پایداری دینامیکی، مطالعات کنترل فرکانس و کنترل ولتاژ و زاویه روتور را در حالت پایدار شبکه، به صورت مستقل از هم در نظر گرفت.
پاسخ ژنراتورهای سنکرون شبکه به تغییرات فرکانس را می‌توان به سه مرحله تقسیم بندی کردCITATION pku89 \l 1065 [2]:
ابتدا به ساکن پس از تشخیص عدم توازن در سیستم، روتور‌های ژنراتورها انرژی آزاد و یا جذب می کنند و این مسأله باعث تغییر در فرکانس سیستم می‌گردد. به این مرحله کنترلی اصطلاحا پاسخ اینرسی گفته می‌شود.
زمانی که تغییرات فرکانس از مقدار معینی بیشتر شد، کنترل کننده‌ها برای تغییر توان ورودی به سیستم فعّال می‌شوند و این مرحله را اصطلاحاً کنترل اولیّه فرکانس می‌نامند. این مرحله کنترلی حدود 10 ثانیه پس از وقوع حادثه آغاز و تا 20 ثانیه پس از آن نیز استمرار می‌یابد.
پس از آن که کنترل کننده‌های موجود اغتشاش بوجود آمده را اصلاح کردند، سیستم مجدّداً متعادل می‌گردد؛ اگرچه که فرکانس سیستم از مقدار نامی خود فاصله دارد. در این مرحله واحدهای تولید شبکه وظیفه باز گرداندن فرکانس سیستم به مقدار نامی آنرا بر عهده می‌گیرند. این مرحله کنترلی را کنترل ثانویه فرکانس می نامند. این مرحله از 30 ثانیه پس از زمان بروز اغتشاش شروع شده و می‌تواند تا 30 دقیقه پس از آن نیز ادامه یابد.
در یک توربین ژنراتور، رفتار دینامیکی کلی بار-تولید و انحراف فرکانس به صورت زیر بیان می‌شود:
(2-1) ۲Hd∆fdt+D∆f=∆Pm-∆Peکه در آن ∆f انحراف فرکانس، ∆Pm انحراف توان مکانیکی و ∆Pe میزان تغییرات بار می‌باشد. ثابت اینرسی با H و ثابت میرایی با D نشان داده شده ‌است. با گرفتن تبدیل لاپلاس از معادله ی فوق، رابطه زیر حاصل می‌شود:
(2-2) ۲Hs∆fs+D∆fs=∆Pms-∆Pesمی‌توان معادله فوق را به صورت بلوک دیاگرام نشان داده شده در شکل (2-1) نمایش داد.

شکل 2- SEQ شکل_2- \* ARABIC 1 بلوک دیاگرام مدل توربین ژنراتور همچنین برای مدلسازی گاورنر، می‌توان از مدل ساده شده ی شکل (2-2) استفاده کرد.

شکل 2- SEQ شکل_2- \* ARABIC 2 مدل ساده شده ی گاورنردقت شود که در شکل (2-2)، R معرف دروپ گاورنر، Tg ثابت زمانی گاورنر و ∆Pc رفرنس مرجع بار است. مدل ساده شده ی توربین نیز به صورت شکل (2-3) در نظر گرفته شده ‌است.

شکل 2- SEQ شکل_2- \* ARABIC 3 مدل ساده شده ی توربینعلاوه بر این، مدل باز گرمکن توربین‌های بخاری را می‌توان با بلوک دیاگرام نشان داده شده در شکل (2-4) مدل کرد:

شکل 2- SEQ شکل_2- \* ARABIC 4 مدل توربین باز گرمکنبنابر این بلوک دیاگرام حلقه اولیّه کنترل بار فرکانس صورت شکل (2-5) در خواهد آمد.

شکل 2- SEQ شکل_2- \* ARABIC 5 مدل خطی و ساده شده کنترل فرکانس سیستم قدرتبرای مدل کردن کنترل فرکانس یک سیستم ایزوله یا جزیره ای می‌توان کل مجموعه را به صورت شکل 2-5 در نظر گرفت. مدل ارائه شده می‌تواند به عنوان مدل پاسخ فرکانسی معادل برای کل سیستم در نظر گرفته شود. در مدل جدید Heq و Deq مجموع H و D‌ های آن ناحیه می‌باشد.
در یک سیستم جزیره ای، تنظیم خطای انتقال توان بین ناحیه ای جزو وظایف کنترل بار فرکانس نیست. تنها وظیفه کنترل بار فرکانس باز گرداندن فرکانس آن ناحیه به مقدار نامی است. برای این که بتوان مدل شکل (2-6) را به یک سیستم قدرت چند ناحیه ای تعمیم داد، بایستی مفهوم ناحیه کنترلی به گونه ای تعریف شود که در برگیرنده گروهی از ژنراتورهای همپا باشد. همپایی به این مفهوم است که همه ی ژنراتورها نسبت به تغییرات بار جهت یکسانی داشته باشند. ضمنا در هر ناحیه، کنترل بار فرکانس برای تمام آن ناحیه فرض شود.
یک سیستم قدرت چند ناحیه ای از نواحی کنترلی مجزایی تشکیل یافته است که به وسیله خطوط انتقال به یکدیگر متصل شده‌اند. انحراف فرکانس در هر ناحیه، نه تنها ناشی از تغییرات بار آن ناحیه است، بلکه تغییرات توان انتقالی خطوط بین ناحیه ای نیز در آن تاثیرگذار است.

شکل 2- SEQ شکل_2- \* ARABIC 6 مدل کنترل بار فرکانس سیستم چند ماشینهکنترل فرکانس در هر ناحیه نه فقط مسئول کنترل فرکانس همان ناحیه است، بلکه مسئولیت کنترل توان انتقالی خطوط ارتباطی با نواحی دیگر را نیز باید برعهده گیرد. بنابراین در یک سیستم چند ناحیه ای قدرت، بایستی تأثیر خطوط انتقال توان بین ناحیه ای را در مدلسازی کنترل بار فرکانس در نظر داشت. در شکل (2-7) یک سیستم دو ناحیه ای نشان داده شده ‌است.

شکل 2- SEQ شکل_2- \* ARABIC 7 شماتیک کلی سیستم دو ناحیه ای قدرتدر این شکل رابطه بین توان انتقالی از خطوط ارتباطی بین دو ناحیه طبق رابطه (2-3) حاصل می‌شود:
(2-3) Ptie=V۱V۲X۱۲sinδ۱-δ۲که در آن V۱ و V۲ ولتاژ‌های نواحی کنترلی 1 و 2 بوده و δ۱ و δ۲ زاویه‌های بار ماشین‌های معادل نواحی 1 و 2 می‌باشد. منظور از X۱۲ راکتانس خط بین ناحیه ای می‌باشد.
با خطی سازی رابطه (2-3) حول نقطه کار δ۱ و δ۲ خواهیم داشت:
(2-4) ∆Ptie=T۱۲∆δ۱-∆δ۲که در آن T۱۲ گشتاور سنکرون کننده نام داشته و برابر است با:
(2-5) T۱۲=V۱V۲X۱۲cosδ۱-δ۲با استفاده از تابع تبدیل π۲s∆f=∆δ خواهیم داشت:
(1-6) ∆Ptie=π۲sT۱۲∆f۱-∆f۲در یک سیستم چند ناحیه ای علاوه بر تنظیم اولیّه فرکانس ناحیه، کنترل مکمل بایستی انحراف توان عبوری از خطوط بین ناحیه ای را نیز به صفر برساند. با افزودن یک کنترلر انتگرال‌گیر به این حلقه کنترلی، این اطمینان حاصل می‌شود که اولاً انحراف موجود در فرکانس و دوماً توان انتقالی خطوط در حالت ماندگار به صفر می‌رسد. سیستم کنترلی که دو هدف عمده فوق پوشش می‌دهد را اصطلاحاً کنترل خودکار تولید می نامند. کنترل خودکار تولید با اضافه کردن یک سیگنال کنترلی جدید در حلقه کنترلی فیدبک صورت می پذیرد. همانگونه که در معادله (2-7) آید، سیگنال کنترلی مذکور که سیگنال خطای ناحیه نامیده می‌شود، ترکیبی خطی از تغییرات فرکانس ناحیه به انضمام تغییرات توان انتقالی خطوط انتقالی می‌باشد:
(2-7) ACEi=Bi∆fi+∆Ptieکه در آن Bi ضریب بایاس ناحیه (رابطه 2-8)، ∆fi تغییرات فرکانس ناحیه و ∆Ptie تغییرات توان خطوط انتقالی است. بلوک دیاگرام نهایی شبکه قدرت که درآن کنترل اولیّه و ثانویه فرکانس لحاظ شده ‌است در شکل (2-8) آمده است.
معمولاً پیشنهاد می‌شود، ضریب Bi به صورت زیر انتخاب شود:
(2-8) Bi=۱R+Diدر رابطه فوق R مشخّصه دروپ و D ضریب حسّاسیت بار نسبت به تغییرات فرکانس می‌باشد. شکل 2-8 چگونگی اعمال کنترل تکمیلی یا ثانویه را نشان می‌دهد.
تاثیر تغییرات بار محلی و توان عبوری از خطوط بین ناحیه ای، در مدل شکل (2-8) به خوبی در نظر گرفته شده ‌است. هر ناحیه کنترلی، توان عبوری از خطوط بین ناحیه ای و فرکانس ناحیه ی خود را در مرکز کنترل ناحیه خود کنترل می‌‎کند. سیگنال ACE بعد از محاسبه، وارد کنترل کننده ی واحد دیسپتچ می‌شود. سیگنال کنترلی تولیدی به عنوان رفرنس بار به توربین گاورنر مورد نظر اعمال می‌شود. بنابر این دیاگرام کنترلی پیشنهادی می‌تواند اهداف اولیّه کنترل بار فرکانس را برآورده ساخته و مقدار توان عبوری از خطوط و همچنین فرکانس ناحیه را به مقدار مشخّص شده برگرداند.
فرض کنید در یک ناحیه کنترلی شاهد تغییر بار به مقدار ∆Pl باشیم. افزایش بار سیستم باعث کاهش فرکانس سیستم می‌شود. می‌توان مقدار اولیّه این انحراف را تابع عوامل زیر دانست:
انرژی جنبشی موجود در قسمت گردان ماشین‌ها (لختی)
تعداد ژنراتورهایی که دارای کنترل اولیّه می‌باشند و ظرفیت رزرو موجود در این واحد‌های تولیدی
مشخّصات دینامیکی ماشین‌ها و کنترلر‌ها.
انحراف ماندگار فرکانس در حالت دائمی، تابع دامنه اغتشاشات وارده و مشخّصه پاسخ فرکانسی شبکه می‌باشد. مشخّصه فرکانسی سیستم تابع مسائل زیر است:
مشخّصه دروپ تمام ژنراتورهای ناحیه که در تأمین بار مشارکت دارند.
حسّاسیت بار به تغییرات فرکانس سیستم در ناحیه مورد نظر.
به طور کلی عدم تعادل بین تولید و مصرف همواره در سیستم قدرت به صورت لحظه ای و دائم وجود دارد. کمتر بودن فرکانس از مقدار نامی نشان دهنده کسری تولید در شبکه است و بالعکس. در عمل حتی بدون وجود خطا در سیستم، بار به صورت پیوسته تغییر می‌‎کند. انحراف فرکانس از مقدار نامی کنترل اولیّه را فعّال می‌کند. کنترل اولیّه باعث ایجاد یک فرکانس جدید و متفاوت از فرکانس نامی (همراه با خطای حالت ماندگار) در ناحیه می‌شود. از آنجائیکه در یک سیستم قدرت، هر ناحیه کنترلی بر اساس توازن بار در ناحیه خود در کنترل بار فرکانس شرکت می‌‎کند، عدم تعادل بین بار و تولید در هر ناحیه باعث تبادل توان بین نواحی کنترلی شده و انحراف از مقدار برنامه ریزی شده را در پی دارد.

شکل 2- SEQ شکل_2- \* ARABIC 8 مدل خطی سیستم دو ناحیه ای قدرت با حلقه کنترلی تکمیلی CITATION pku89 \l 1065 [2]وظیفه کنترل ثانویه که همان کنترل خودکار تولید نامیده می شود، حفظ توازن توان در تمام ناحیه‌های کنترلی به صورتی است که مقدار فرکانس برابر مقدار نامی و همچنین میزان توان انتقالی خطوط برابر با میزان توان انتقالی برنامه ریزی شده آن باشد.
علاوه بر این دو حلقه کنترلی، کنترل ثالثیه ای نیز وجود دارد که عملکرد آن کند تر از کنترل‌های اولیّه و ثانویه است. ساختار کنترل ثالثیه به نحوه ی مدیریت شبکه و قوانین آن وابستگی دارد. به عنوان مثال، در ساختار سنتی، بهره بردار سیستم پس از انجام پخش بار اقتصادی، مقادیر جدید نقطه کار واحد‌های تولیدی را تعیین می کرد. در واقع، کنترل ثالثیه میزان توان تولیدی واحدها و نقاط بار گذاری آنها را به گونه ای تعیین می‌‎کند که با برقراری توازن میان توان تولیدی اکتیو و راکتیو واحدها با میزان مصرف آنها (به علاوه تلفات شبکه) و ضمن رعایت قیود شبکه، هزینه بهره برداری نیز کمینه شود.
ورود منابع انرژی تجدیدپذیر در مقیاس بالا اثرات پر رنگی بر قابلیّت کنترل فرکانس سیستم قدرت و سیستم‌های کنترل خودکار همانند دیگر سیستم‌های کنترلی و بهره برداری خواهد داشت. این اثرات در سال‌های آتی که ضریب نفوذ تولیدات تجدیدپذیر روند صعودی به خود می‌گیرد نیز افزایش می‌یابد. از سوی دیگر، اکثر منابع انرژی تجدیدپذیر که مورد بهره برداری قرار گرفتند فاقد قابلیّت‌های تنظیم فرکانس می‌باشند. شاید این خصیصه کمک مشخّصی به قابلیّت تنظیم فرکانس شبکه به حساب نیاید، بلکه نیاز به داشتن توان کافی هنگام بروز اغتشاشی در شبکه و برقراری تعادل تولید-مصرف را دوچندان می‌‎کند. ساختار کنترل فرکانس در آینده، می‌بایست از انعطاف عمل و هوشمندی بیشتری برخوردار بوده تا بتواند این اطمینان خاطر را فراهم آورد که به صورت پیوسته توازن لازم میان تولید و مصرف را در شبکه در پی بروز تغییر در بار شبکه و همچنین نوسانات توان تولیدی منابع تجدیدپذیر برقرار نماید.
برای رسیدن به این مطلوب، بهره‌برداران شبکه می بایست اطلاعات و الگوهای دقیق تولید تجدیدپذیر و بار را در دست داشته باشند. امروزه توازن تولید-مصرف در یک سیستم قدرت بوسیله کنترل خروجی منابع تولید متداول (و نه تولید تجدیدپذیر) جهت دنبال کردن الگوی بار مد نظر قرار دارد. با ورود منابع انرژی تجدیدپذیر به نظر می‌رسد از سهم ظرفیت در دسترس کنترل خودکار تولید در برقراری تعادل تولید و مصرف (کنترل بار فرکانس) کاسته شود. در نتیجه می‌توان توقع داشت که در آینده ای نزدیک، کنترل خودکار تولید سهم مهّمی در برقراری مجدّد توازن تولید-مصرف در چهار چوب زمانی کوتاه مدت (چند ثانیه تا چندین دقیقه) و اداره کردن خطای پیشبینی بار و تولید متداول، بازی کند. از این رو، بسیار ضروری است بهره‌برداران و طراحان شبکه بروی استراتژی‌های کنترلی بازنگری‌های لازم را به عمل آورند و به صورت نسبی مرز‌های عملکرد، قابلیّت‌ها و تکنولوژی‌های لازم را برای ارتقای کیفیت توان تحویلی، به روز نمایند.
2-2- پیشینه تحقیق2-2-1- وضعیت فعلی استفاده از منابع انرژی تجدیدپذیرامروزه لزوم استفاده ازمنابع انرژی تجدیدپذیر در بسیاری از کشورهای دنیا به اثبات رسیده است. رشد استفاده از منابع انرژی تجدیدپذیر در پاسخ به پدیده گرمایش جهانی و نیاز به داشتن منبع سوخت امن و ارزان، دلیلی بر این مدعاست. منابع انرژی تجدیدپذیر در حال حاضر بیش از 14% نیاز به انرژی کل دنیا را فراهم می‌آورد CITATION HOu07 \l 1033 [3].
در حال حاضر، تکنولوژی استحصال انرژی بادی بیشترین سهم از بکارگیری منابع انرژی تجدیدپذیر در سیستم قدرت را به خود اختصاص داده است. پیش بینی می‌شود تا سال 2015 تولید جهانی آن به بیش از 300 گیگاوات رسد. اینگونه پیش بینی شده ‌است که ضریب نفوذ تولید بادی در کل دنیا، تا سال 2020 به 8% کل مقدار توان تولیدی برسد. اتحادیه اروپا نیز رهیافت به ضریب نفوذ 20% را در پایان سال 2020 میلادی در افق چشم انداز خود قرار داده است CITATION Dep06 \l 1065 [4]. به گفته سازمان انرژی بادی اروپا، ظرفیت تولیدی توان بادی به مقدار 180 گیگاوات ارتقا یابد CITATION EWI07 \l 1033 [5]. دپارتمان انرژی ایالات متحده نیز رسیدن به ضریب نفوذ 6% استحصال انرژی بادی در پایان سال 2020 اعلام داشته است CITATION AWE \l 1065 [6].
در میان تمامی مصادیق تولید پراکنده، تولید خورشیدی نیز به سبب داشتن خصوصیات دوستدار محیط زیست (سبز)، کاهش افزایشی قیمت ماژول خورشیدی و همچنین مشوّق‌های مالی دولت‌ها به سرعت در حال پیشرفت می‌باشند CITATION HXi11 \l 1033 [7] CITATION GMa12 \l 1033 [8]. فعّالیت‌های متنوعی در جهت استفاده از انرژی خورشیدی، باتری‌ها و واحدهای ذخیره‌ساز انرژی انجام یافته است. گزارش‌های منتشره در سال 2011 حاکی از این مطلب است حجم عظیمی از سیستم‌های متصل به شبکه در کشور‌های توسعه یافته نظیر ایالات متحده، آلمان و ژاپن مورد بهره برداری قرار گرفته اند و همچنین برنامه‌های احداث چندین واحد دیگر در سرتاسر جهان در دستور کار قرار دارند CITATION SAh11 \l 1033 [9] CITATION cou08 \l 1065 [10]. هدف گذاری ژاپن در پایان سال 2010 نصب ظرفیت 28 گیگاوات پانل‌های خورشیدی بوده است CITATION MYa10 \l 1065 [11]. سامسونگ به تازگی اعلام داشته با امضای قراردادی قصد ساختن واحد خورشیدی 100 مگاواتی را دارد که اولین فاز از یک مجموعه 500 مگاواتی به حساب می‌آیدCITATION Sam10 \l 1033 [12]. رشد بازار برق منابع انرژی تجدیدپذیر در کشورهای آسیایی نیز چشمگیر بوده است. بر اساس نرخ رشد فعلی، اتحادیه صنعتی منابع انرژی تجدیدپذیر چین، ظرفیتی نزدیک به 50 گیگاوات را تا سال 2015 پیش بینی کرده‌است CITATION The08 \l 1065


کنترل خودکار تولید سیستم قدرت در حضور منابع انرژی تجدیدپذیر پایان نامه ها
قیمت: 11200 تومان

این نوشته در پایان نامه ها ارسال شده است. افزودن پیوند یکتا به علاقه‌مندی‌ها.

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *