ماتریس سختی برای یک پی صلب مستطیلی مستقر بر محیط ‌لایه‌ای‌ نیم بینهایت با رفتار ایزوتروپ جانبی

به نام خداوند جان و خرد

وزارت علوم، تحقیقات و فناوری
پایاننامه
مقطع کارشناسی ارشد رشته عمران- سازه
ماتریس سختی برای یک پی صلب مستطیلی مستقر بر محیط ‌لایه‌ای‌ نیم بینهایت با رفتار ایزوتروپ جانبی
:استاد راهنما
دکتر مرتضی اسکندری قادی
:استاد مشاور
مهندس عزیزالله اردشیر بهرستاقی
نگارنده :
پرهام ضیغمی
248602539116000زمستان 1391
تقدیم، تشکر و قدردانیسپاس خدای را که سخنوران، در ستودن او بمانند و شمارندگان، شمردن نعمت های او ندانند و کوشندگان، حق او را گزاردن نتوانند.
با سپاس از سه وجود مقدس :
آنان که ناتوان شدند تا ما به توانایی برسیم، موهایشان سپید شد تا ما روسفید شویم و عاشقانه سوختند تا گرمابخش وجود ما و روشنگر راهمان باشند.
پدرانمان ، مادرانمان ، استادانمان …
از استاد با کمالات و شایسته؛ جناب آقای دکتر اسکندری که در کمال سعه صدر، با حسن خلق و فروتنی، از هیچ کمکی در این عرصه بر من دریغ ننمودند و زحمت راهنمایی این رساله را بر عهده گرفتند و از استاد صبور، جناب آقای مهندس اردشیر، که زحمت مشاوره این رساله را متقبل شدند کمال تشکر و قدردانی را دارم.
همچنین از استاد فرزانه جناب آقای دکتر واثقی که قبول زحمت فرمودند و در جلسه دفاع حضور یافته و اینجانب را از نظرات ارزشمند خود بهره مند ساختند، سپاسگزارم.

چکیدهدر این پایان ‌نامه، ماتریس سختی یک شالوده صلب مستطیلی مستقر بر یک محیط لایه ای متصل به یک نیم فضای همگن آن هم با رفتار ایزوتروپ جانبی که تحت نیروهای قائم، افقی و گشتاور خمشی در حالت استاتیکی قرار دارد، به دست می‌آید. این ماتریس سختی در تحلیل اندرکنش استاتیکی سازه و خاک مورد استفاده قرار می گیرد. به منظور رسیدن به هدف پایان نامه از روش تابع پتانسیل، استفاده از سری فوریه و تبدیل هنکل، ارتباط ماتریسی لایه ها و روش‌های عددی استفاده می‌شود. با بکارگیری قضیه تبدیل معکوس هنکل و استفاده از سری فوریه، توابع گرین تنش‌ها و تغییرمکان‌ها در فضای واقعی به دست می‌آیند.
سپس با تغییر دستگاه مختصات از استوانه‌ای به دکارتی، توابع گرین تغییر‌مکان و تنش در دستگاه مختصات دکارتی به‌دست آمده و با انتقال دستگاه مختصات از مبداء به یک نقطه سطحی دلخواه، توابع تغییرمکان و تنش برای بارگذاری خارج از مبداء مختصات به‌دست می‌آیند. بدین ترتیب توابع گرین برای باردلخواه تعیین می‌شوند. با استفاده از توابع گرین تغییرمکان و تنش، این توابع برای نیروی موثر بر یک سطح مربع مستطیلی تعیین می‌شوند. به منظور مقایسه و بررسی صحت نتایج به دست آمده با کارهای انجام ‌شده‌ قبلی، محیط برای حالت نیم‌فضای همگن ساده می‌شود.
با نوشتن معادلات به فرمت اجزاء محدود و استفاده از المان جدید به نام المان گرادیانی پویا، تنش تماسی قائم و افقی در هر گره مربوط به شالوده چنان تعیین می‌شوند که شرط تغییرمکان یکنواخت و یا چرخش یکنواخت در هر نقطه از صفحه صلب را ارضاء نماید. دستگاه معادلات حاکم بر تنش تماسی قائم و افقی به صورت عددی حل می‌شود. با استفاده از تنش زیر شالوده صلب، اندازه نیروی تماسی برای تغییرمکان قائم و افقی ثابت و همچنین لنگرخمشی برای دوران یکنواخت به‌دست می‌آیند. ماتریس سختی وظیفه تبدیل بردار مجموعه تغییر مکان و دوران به بردار نیروهای تماسی وگشتاور خمشی را بر عهده دارد و بر این اساس بدست می آید.
فهرست مطالب TOC o “1-3” h z u
چکیدهبمقدمه………………………………………………………………………………………………………………………………………….ز
فصل اول. معادلات تعادل در محیط‏های ایزوتروپ جانبی11-1-مقدمه21-2-بیان مسأله و معادلات حاکم51-3-توابع پتانسیل9
1-4-شرایط مرزی13فصل دوم. HYPERLINK l “_Toc334902097″توابع گرین در حالت کلی……………………………………………………………………………………………………………………….25
2-1-مقدمه…………………………………………………………………………………………………………………………………………26
HYPERLINK l “_Toc334902094″2-2-حالت 272-3-تبدیل دستگاه مختصات قطبی به دستگاه مختصات دکارتی و انتقال محورها30
فصل سوم..ماتریس سختی شالوده صلب مستطیلی با استفاده از توابع گرین……………………………………………………………………..33
3-1-مقدمه34
3-2- بیان مسأله ومعادلات حاکم در حالت شالوده صلب مستطیلی……………………………………………………………….343-2-1-توابع شکل مورد استفاده383-2-1-1-توابع شکل المان های لبه ای 8 گره ای393-2-1-2-توابع شکل المان های میانی 8 گره ای413-2-1-3-توابع شکل المان های گوشه 8 گره ای413-2-1-4-فلوچارت برنامه نویسی برای تحلیل مسأله44فصل چهارم نتایج عددی47فصل پنجم نتیجه‏گیری و پیشنهادات775-1-مقدمه و نتیجه گیری785-2-پیشنهادات79فهرست مراجع80
فهرست شکل‌ها
TOC h z c “شکل 1-” شکل 1- 1- شکل شماتیک ساختمان، شالوده و زمین زیر آنها4شکل 1- 2- شکل شماتیک مدل اجزاء محدود ساختمان، شالوده و زمین زیر آنها4شکل 1- 3- شکل شماتیک مدل اجزاء محدود ساختمان و شالوده و توابع امپدانس معادل خاک5شکل 1- 4- نیم فضای لایه‏ای متشکل از لایه‏ها با رفتار ایزوتروپ جانبی6شکل 1- 5 – نیم‏‏‏‏‏ فضای‏ ایزوتروپ جانبی لایه ای‏ تحت اثر نیروی دلخواه در سطح…..13شکل 1- 6-خواص هندسی لایه ام17شکل 2- 1- نیم فضای همگن با رفتار ایزوتروپ جانبی تحت نیروی متمرکز دلخواه استاتیکی27شکل 2- 2-تبدیل مختصات از دستگاه استوانه ای‏ به دستگاه مختصات دکارتی و انتقال محورها30شکل 3- 1– صفحه صلب تحت تغییر مکان صلب در امتداد 36شکل 3- 2- صفحه صلب تحت تغییر مکان صلب در امتداد 36شکل 3- 3- صفحه صلب تحت خمش37شکل 3- 4 -نحوه المان بندی تنش‏ها‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏در زیر پی صلب38شکل 3-5- توابع شکل المان‏های‏ لبه 8 گرهی 40شکل 3-6- توابع شکل المان‏های‏ میانی 8 گرهی42شکل 3- 7- توابع شکل المان‏های‏ گوشه 8 گرهی 43شکل 3- 8 -تابع 44 TOC h z c “شکل 1-” شکل 4- 1- تغییر مکان در و بر حسب عمق ناشی از نیروی یکنواخت قائم با شدت واحد در حالت استاتیکی وارد بر سطح مستطیلی به طول و عرض 53شکل 4- 2- تغییر مکان در و بر حسب عمق ناشی از نیروی یکنواخت قائم با شدت واحد در حالت استاتیکی وارد بر سطح مربعی به اضلاع 54شکل 4- 3- تغییر مکان در و بر حسب عمق ناشی از نیروی یکنواخت افقی با شدت واحد در حالت استاتیکی وارد بر سطح مستطیلی به طول و عرض 55شکل 4- 4- تغییر مکان در و بر حسب عمق ناشی از نیروی یکنواخت افقی با شدت واحد در حالت استاتیکی وارد بر سطح مربعی به اضلاع 56شکل 4- 5 – تغییر مکان در و بر حسب فاصله افقی ناشی از نیروی یکنواخت قائم با شدت واحد در حالت استاتیکی وارد بر سطح مستطیلی به طولوعرض …..57شکل 4- 6- تغییر مکان در و بر حسب فاصله افقی ناشی از نیروی یکنواخت قائم با شدت واحد در حالت استاتیکی وارد بر سطح مربعی به اضلاع 58شکل 4- 7- تغییر مکان در و بر حسب فاصله افقی ناشی از نیروی یکنواخت افقی با شدت واحد در حالت استاتیکی وارد بر سطح مستطیلی به طولوعرض 59شکل 4- 8- تغییر مکان در و بر حسب فاصله افقی ناشی از نیروی یکنواخت افقی با شدت واحد در حالت استاتیکی وارد بر سطح مربعی به اضلاع 60شکل 4- 9- تنش در و بر حسب عمق ناشی از نیروی یکنواخت قائم با شدت واحد در حالت استاتیکی وارد بر سطح مستطیلی به طولوعرض 61شکل 4- 10- تنش در و بر حسب عمق ناشی از نیروی یکنواخت قائم با شدت واحد در حالت استاتیکی وارد بر سطح مربعی به اضلاع 62شکل 4- 11- تنش در و بر حسب عمق ناشی از نیروی یکنواخت افقی با شدت واحد در حالت استاتیکی وارد بر سطح مستطیلی به طولوعرض 63شکل 4- 12 – تنش در و بر حسب عمق ناشی از نیروی یکنواخت افقی با شدت واحد در حالت استاتیکی وارد بر سطح مربعی به اضلاع 64شکل 4-13- تنش در و بر حسب فاصله افقی ناشی از نیروی یکنواخت قائم با شدت واحد در حالت استاتیکی وارد بر سطح مستطیلی به طولوعرض 65شکل 4-14- تنش در و بر حسب فاصله افقی ناشی از نیروی یکنواخت قائم با شدت واحد در حالت استاتیکی وارد بر سطح مربعی به اضلاع 66شکل 4- 15 – تنش در و بر حسب فاصله افقی ناشی از نیروی یکنواخت افقی با شدت واحد در حالت استاتیکی وارد بر سطح مستطیلی به طول وعرض67شکل 4- 16 – تنش در و بر حسب فاصله افقی ناشی از نیروی یکنواخت افقی با شدت واحد در حالت استاتیکی وارد بر سطح مربعی به اضلاع 68شکل 4- 17- تنش سه بعدی در سطح نسبت بهناشی از تغییر مکان افقی ثابت یک صفحه صلب مربعی به ضلع برای در حالت استاتیکی 69شکل 4- 18- تنش سه بعدی در سطح نسبت بهناشی از تغییر مکان افقی ثابت یک صفحه صلب مربعی به ضلع برای در حالت استاتیکی 70شکل 4- 19- تنش سه بعدی در سطح نسبت بهناشی از تغییر مکان افقی ثابت یک صفحه صلب مربعی به ضلع برای در حالت استاتیکی 71شکل 4- 20- تنش سه بعدی در سطح نسبت بهناشی از تغییر مکان افقی ثابت یک صفحه صلب مربعی به ضلع برای در حالت استاتیکی 72شکل 4- 21- تنش سه بعدی در سطح نسبت بهناشی از تغییر مکان قائم ثابت یک صفحه صلب مربعی به ضلع برای در حالت استاتیکی 73شکل 4- 22- تنش سه بعدی در سطح نسبت بهناشی از تغییر مکان قائم ثابت یک صفحه صلب مربعی به ضلع برای در حالت استاتیکی 74شکل 4- 23- تنش سه بعدی در سطح نسبت بهناشی از تغییر مکان قائم ثابت یک صفحه صلب مربعی به ضلع برای در حالت استاتیکی 75شکل 4- 24- تنش سه بعدی در سطح نسبت بهناشی از تغییر مکان قائم ثابت یک صفحه صلب مربعی به ضلع برای در حالت استاتیکی 76فهرست جدول‌ها
TOC h z c “جدول 3-” جدول 4- 1- ضرایب ارتجاعی مصالح انتخاب شده49جدول 4- 2- نحوه قرارگیری مصالح مختلف برای تعیین جواب عددی50
جدول 4- 3- سختی یک صفحه مربعی به طول و عرض در محیط های متفاوت52

MACROBUTTON MTEditEquationSection2 Equation Chapter 1 Section 1 SEQ MTEqn r h * MERGEFORMAT SEQ MTSec r 1 h * MERGEFORMAT SEQ MTChap r 1 h * MERGEFORMAT MACROBUTTON MTEditEquationSection2 Equation Chapter 1 Section 1 SEQ MTEqn r h * MERGEFORMAT SEQ MTSec r 1 h * MERGEFORMAT SEQ MTChap r 1 h * MERGEFORMAT مقدمهدر این پایان ‌نامه ابتدا پاسخ محیط نیم‏‏‏‏‏ بینهایت لایه ای‏ با رفتار ایزوتروپ جانبی تحت اثر نیروی متمرکز سطحی دلخواه در حالت استاتیکی در محدوده‏‏‏‏ی‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏ خطی- ارتجاعی به دست ‏می‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏آید. سپس ماتریس سختی پی صلب مستطیلی مستقر بر محیط مذکور در حالت استاتیکی تعیین می‌شود. برای‏ حل، ابتدا معادلات تعادل در فصل اول در دستگاه مختصات استوانه‌ای‏ برای‏ هر‏‏‏‏یک از لایه‏ها نوشته شده و سپس با استفاده از روابط تنش-کرنش و کرنش- تغییرمکان، معادلات برحسب تغییرمکان‌ها ‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏نوشته می‌شوند. این معادلات به صورت دستگاه معادلات دیفرانسیل با مشتقات جزئی ‏می‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏باشند. به منظور مجزاسازی آن‏ها، از دو تابع پتانسیل اسکالر در هر لایه استفاده ‏می‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏شود. معادلات حاکم بر توابع پتانسیل، معادلات دیفرانسیل با مشتقات جزئی از مرتبه 4 و 2 ‏می‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏باشند. برای‏ حل معادلات حاکم بر توابع پتانسیل در هر لایه با توجه به شرط منظم بودن از تبدیل انتگرالی هنکل نسبت به مختصه شعاعی و تبدیل فوریه بر حسب مختصه آزیموتی استفاده کرده و جواب در حالت کلی برای‏ کلیه لایه‌ها ‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏ تعمیم داده می‏شود.
در ادامه، شرایط مرزی در سطح آزاد نیم‏‏‏‏‏ فضا و شرایط پیوستگی بین لایه‌ها‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏ نوشته شده و با استفاده از شرایط پیوستگی، معادلات ارتباطی بین ضرایب مجهول توابع پتانسیل لایه‏ها ‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏که خود ناشی از انتگرال گیری می باشند، بدست ‏می‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏آیند. با برقراری رابطه بازگشتی بین ضرایب لایه‏ها‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏، کلیه ضرایب به جز ضرایب نیم‏‏‏‏‏ فضای‏ تحتانی حذف شده و ضرایب نیم‏‏‏‏‏ فضای‏ تحتانی به کمک شرایط مرزی در سطح آزاد تعیین ‏می‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏شوند و از آن بقیه ثابت‌ها‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏ با استفاده از ارتباط بین لایه‌ها‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏ (شرایط پیوستگی) بدست ‏می‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏آیند. سپس، با استفاده از روابط تنش- تابع پتانسیل و تغییر مکان- تابع پتانسیل،

این نوشته در پایان نامه ها ارسال شده است. افزودن پیوند یکتا به علاقه‌مندی‌ها.

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *